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Introduzione

Uno degli scopi di questo corso è farti conoscere alcuni argomenti della matematica che
possono esserti utile come esperto di tematiche ambientali. Una parte del corso sarà dedicata
ai metodi della statistica, con esercitazioni con R in laboratorio. In queste note troverai poco
di questi argomenti, perché esistono testi soddisfacenti, che elenco nel paragrafo successivo.
Qui troverai invece gli appunti sulla parte di modellistica matematica. In estrema sintesi,
un modello matematico consiste in

a) identificare variabili e parametri con cui descrivere alcuni aspetti di un fenomeno;

b) inventare/scoprire le relazione matematiche tra queste grandezze;

c) esplorare con strumenti analitici e numerici il comportamento del modello, in particolare

• fare previsioni

• studiare come cambia il modello al cambiare dei parametri

• validare il modello, cioè confrontare gli esiti dell’esplorazione con il comportamento
reale del sistema.

Incontrerai, presumibilmente, due tipi di difficoltà. La prima è che potresti far fatica a seguire
alcuni passaggi e alcuni ragionamenti, perché hai dimenticato molta della matematica che ti
è stata insegnata nella triennale. In questi appunti ci sono esercizi che servono a risvegliare
le tue competenze matematiche, ma il corso non tratta di questo, ha ambizioni maggiori che
insegnarti di nuovo i logaritmi (ma servirà anche a questo).
La seconda difficoltà è più sottile e ha a che fare con l’interazione tra i due piani descrittivi,
quello naturalistico e quello matematico. Questa interazione è indispensabile nei punti a) e
b), in cui la comprensione degli aspetti biologici e ambientali si deve tradurre in relazioni
matematiche (ti aiuterà il fatto che in molti casi queste relazioni sono di pochi tipi differenti).
Nel punto c), invece, è solo la matematica che deve parlare, con i suoi metodi deduttivi. La
difficoltà consiste nel non confondere la spiegazione matematica con quella naturalistica.
L’utilità della matematica è proprio qui: dopo aver stabilito il modello, non serve l’intuito o
l’esperienza o qualche conoscenza più profonda: è solo il ragionamento, aiutato da strumenti
analitici e numerici, che ci permette di arrivare a una descrizione quantitativa e qualitativa
del fenomeno.
Questa relazione tra matematica e natura è chiarissima in fisica (per esempio non possiamo
mandare un razzo sulla Luna a “intuito”), mentre solo alcuni aspetti delle scienze naturali
sono matematizzati, e questo rende più facile la confusione tra i due piani.
Faccio un esempio in dettaglio: il modello preda-predatore è stato inventato negli anni
20 del 1900, indipendentemente da due scienziati, Lotke (biofisico, chimico, statistico) e
Volterra (fisico-matematico di questo ateneo). In particolare Volterra si interessò al fatto
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che, durante la prima guerra mondiale, il numero di pesci predatori nel mare Adriatico
crebbe in corrispondenza del diminuire della pesca delle specie adatte al consumo umano. Ci
occuperemo di questo famoso modello, qui noto solo che, una volte comprese le relazioni tra le
grandezze in gioco, si possono matematicamente ottenere varie conclusioni, sulla numerosità
dei pesci preda e dei pesci predatori:

i. le due numerosità hanno un andamento periodico nel tempo;

ii. le numerosità medie nel tempo dipendono solo dai parametri del sistema, quindi anche se
improvvisamente aggiungessimo prede al sistema, o eliminassimo la metà dei predatori,
le medie non cambierebbero;

iii. se cambiamo i parametri del sistema, rendendo più semplice la vita delle prede (simu-
lando in questo modo la riduzione della pesca), allora il numero medio di prede non
cambia, mentre il numero medio di predatori aumenta.

Si possono dare delle spiegazioni naturalistiche di queste conclusioni, per esempio

i. se le prende crescono di numero, allora i predatori possono nutrirsi di più, dunque
cresceranno di numero facendo decrescere il numero di prede; questo fatto comporte-
rà la diminuzione del numero di predatori che permetterà così l’aumento delle prede,
chiudendo il ciclo;

ii. il sistema è in equilibrio ecologico, e non cambia se si cambiano artificialmente le
numerosità delle popolazioni (se no non sarebbe un equilibrio);

iii. in una catena trofica, le specie più in alto traggono maggior vantaggio da un aumento
delle risorse alla base.

Non c’è nulla di biologicamente errato in questo ragionamenti, ma sono di qualità differente
da quelli matematici, infatti sono descrittivi, mentre quelli matematici sono deduttivi. In
un ragionamento matematico, le conclusioni sono inevitabili conseguenze delle premesse; per
cambiare conclusioni si devono cambiare le ipotesi di partenza del modello, approfondendone
la comprensione. Le spiegazioni naturalistiche in questo caso riassumono le conclusioni ma-
tematiche, e la loro ragionevolezza ci fa capire che il modello ha una sua solidità dal punto di
vista biologico. D’altra parte, la matematica contribuisce ad ampliare le conoscenze non solo
con le sue deduzioni, ma anche costringendo lo scienziato a trovarne una sintesi naturalistica
(farò esempi a proposito dello shift dei sistemi ecologici).

In questo corso tenterò di insegnarvi a distinguere i ragionamenti matematici da quelli natu-
ralistici, mostrandovi come la matematica permetta a volte di raggiungere conclusioni altri-
menti inaccessibili, e come alcuni concetti matematici in realtà siano alla base di descrizioni
naturalistiche che oggi ci sembrano ovvie.
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Capitolo 1

Richiami sulle funzioni elementari

Scopo di questa sezione è rinfrescare qualche nozione di matematica elementare in termini
modellistici. Lo farò discutendo alcuni semplici esercizi. Trovate esempi più dettagliati e la
teoria su [BDM capp. 4,5,6,7].

1.1 Leggi lineari

Esercizio 1. Pressione
La pressione atmosferica a livello del mare è di (circa) una atmosfera, e cresce di (circa) una atmosfera
ogni 10 metri di profondità.

a. Scrivi la legge P (h) che esprime il valore della pressione P in funzione del valore della profondità
h.

b. Disegnane il grafico

c. Cosa è proporzionale nella legge che hai scritto?

d. Cosa rappresenta geometricamente il coefficiente di h nel grafico che hai disegnato?

Risposte

a. P (h) = 1 + h/10

b. Il grafico è rappresentato da una retta (anzi da una semiretta, perché la legge descritta
non ha senso per h < 0).

c. Sono proporzionali la variazione di pressione ∆P e la variazione di profondità ∆h. Più
formalmente, dati h1 e h2,

∆h = h2 − h1, ∆P = P (h2)− P (h1) = ∆h/10

d. Il coefficiente di proporzionalità tra ∆P e ∆h è la velocità media di variazione di P
con h, ed è costante:

∆P

∆h
=

1

10

qualunque siano h1 e h2.
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Esercizio 2. Crescita di una larva - BDM esempio 4.1.4 e seguenti
La massa m di una larva di insetto pesa alla nascita 10 g, dopo 20 ore pesa 24 g, dopo 30 ore pesa
30 g. Disegna questi dati in un grafico.

a. Quanto pesa la larva dopo 10 ore dalla nascita?

b. E dopo 25?

c. E dopo 40?

(Per risolvere questo esercizio, tra le altre cose hai bisogno di ricordare come si scrive la retta
che passa per due punti, vedi [BDM capitolo 4])

Va notato che la velocità media di variazione tra t = 0 e t = 20 è diversa da quella tra t = 24
e t = 30. Per dare un valore di m(10) si ricorre all’interpolazione lineare tra i dati per
t = 0 e t = 20. Per dare un valore di m(25) si ricorre all’interpolazione tra i dati per t = 20
e t = 30. Per dare un valore di m(40) si ricorre all’estrapolazione lineare usando i dati
per t = 20 e t = 30.

Ricordo che si definisce il concetto fisico e matematico di velocità istantanea passando
al limite il valore della velocità media mandano a 0 l’incremento. Supponendo di conoscere
tutti i valori di m(t), la velocità di variazione istantanea al tempo t è

lim
∆t→0

∆m

∆t
= lim

∆t→0

m(t+∆t)−m(t)

∆t

Come è noto, questo valore è per definizione la derivata di m(t) (si vedano [BDM capp. 6,
7] per i richiami su limiti e derivate).

La tecnica di interpolazione e estrapolazione e il concetto di derivata sono due dei motivi
che spiegano l’abbondanza delle leggi lineari in natura: per piccole variazioni, ogni funzione
regolare è ben approssimata da una retta. Vedi [BDM par. 7.1]

1.2 Leggi esponenziali

Esercizio 3. Duplicazione batterica
Sia N(t) il numero di batteri all’ora t, in una capsula Petri in cui si possono riprodurre senza vincoli.
Supponiamo che N(0) = 103, e che N raddoppi ogni ora.

a. Quanto vale N(t)? Quali quantità sono proporzionali?

b. Supponiamo che N raddoppi ogni 3 ore. Quanto vale N(t)?

Risposte

a. N(t) = 103 × 2t

b. N(t) = 103 × 2t/3
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Le due leggi appena scritte sono leggi esponenziali. In matematica si usa esprimere le leggi
un una base particolare, il numero e, per motivi legati alle proprietà delle derivate. Ricordo
che lnx è la funzione inversa dell’esponenziale ex. cioè

ln ex = x, eln y = y

Dunque
2t = eln 2t = et ln 2

dove ho usato la proprietà dei logaritmi

ln ab = b ln a

In generale, la legge di crescita che abbiamo descritto ha la forma

N(t) = N0e
αt

e non è evidentemente una legge lineare, infatti la velocità di crescita media non è costante.
Calcoliamo la velocità istantanea, facendo la derivata:

N ′(t) = N0αe
αt = αN0e

αt = αN(t)

Dunque in una legge di crescita esponenziale, la velocità istantanea di variazione è propor-
zionale alla numerosità.
Un altro modo per descrivere questo modello è di ricordare che il tasso di variazione è
proprio il rapporto tra la velocità di variazione e la quantità che stiamo considerando. Per
esempio, tornando all’esempio dei batteri, se la popolazione duplica in un ora, allora il tasso
medio di variazione in un’ora è

N(t+ 1)−N(t)

N(t)
= 1 = 100%

È da notare che che il tasso istantaneo di variazione è invece ln 2 ≈ 0.7. Le leggi esponenziali
descrivono fenomeni con tassi di variazione costanti, ma l’intervallo su cui viene misurato il
tasso deve essere fisso, al variare dell’ampiezza dell’intervallo cambia anche il tasso.

Siamo passati dalle leggi lineari, in cui la velocità di variazione è costante, a una legge in cui
la velocità di variazione non è costante ma proporzionale alla quantità stessa. Torneremo su
questo punto.

1.3 Le scale delle grandezze e i logaritmi
Nei paragrafi precedenti ho provato a convincervi che se sto studiando un fenomeno per
piccole variazioni delle grandezze in gioco, mi posso aspettare una proporzionalità tra esse,
che sarà falsa man mano che le variazioni crescono.
In genere, un fenomeno viene descritto per un intervallo (un “range”) di valori delle variabili
che fissa la scala in cui analizzarlo. Nell’esempio della larva l’intervallo è [0, 40], dunque la
scala è quella della decina di gironi. Nell’esempio della pressione non è specificato, ma la
legge scritta varrà fino a che l’acqua può essere considerata incomprimibile, anche a 10 000
metri di profondità.

Al cambiare della scala, un particolare aspetto di un fenomeno cambia radicalmente. Per
esempio, concentriamoci su cosa c’è intorno a noi alle varie scale di distanze.
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1 m una stanza

100 m il quartiere

10 km la città

1000 km la nazione

100 000 km il nostro pianeta e lo spazio fino a circa 1/4 della distanza dalla Luna

La scala è ben descritta dal logaritmo della grandezze. Infatti, in questo esempio, se considero
il logaritmo in base 10 ottengo la sequenza 0, 2, 4, 6, che si ottiene con incrementi costanti,
ai quali corrispondono grandezze moltiplicate per 100 = 102.
Quando si vogliono rappresentare fenomeni a scale differenti si usano gli assi logaritmici
(vedi [BDM par. 5.2, in particolare le figure 5.15, 5.17])

Un fatto importante è che la legge esponenziale f(x) = aeαx, usando un asse verticale
logaritmico è descritta da una retta, infatti

ln f(x) = ln a+ αx

Due insegnamenti;
1. nelle leggi esponenziali c’è una relazione di proporzionalità tra la scala del fenomeno e la
variabile indipendente;
2. le leggi esponenziali si rappresentano (e si cercano) utilizzando preferibilmente assi verticali
logaritmici.

Ci si potrebbe chiedere quali sono i fenomeni naturali in cui bisogna tenere conto della
variazione di scala. Faccio due esempi, ma ne faremo altri
1. L’acidità delle acque influisce molto sulla biologia delle specie che le abitano. L’acidità si
misura con il pH, che è

pH = − log[H+]

cioè l’opposto del logaritmo in base 10 della concentrazione di ioni idrogeno in moli per
litro. Se il pH è 7, la concentrazione è 10−7mol/ ℓ. Se cambia il pH cambia la scala della
concentrazione, e sono questi cambiamenti che hanno realmente effetti biologici (vedi BDM
esempi 6.2.11-14).
2. La legge (empirica) di Weber-Fechner asserisce che la variazione della risposta fisiologica a
uno stimolo è proporzionale allo stimolo stesso. Per fare un esempio, avvertiamo facilmente
la differenza in peso tra 100 grammi e 110 grammi, quella tra 1000 e 1100, ma abbiamo
difficoltà a distinguere 1000 grammi da 1010 grammi. In formule, se con S indichiamo lo
stimolo, e con p la percezione,

∆p = k
∆S

S

che possiamo riscrivere come
∆S

∆p
= S/k

Questa relazione è la stessa che abbiamo provato per le leggi esponenziali. Passando al limite

S ′(p) = S/k, da cui S = S0e
(p−p0)/k
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(scritta in questo modo sono sicuro che per p = p0 si ha S = S0). Però sono interessato
alla percezione in funzione dello stimolo, cioè alla funzione inversa p = p(S). Passando ai
logaritmi si ottiene

p(S) = p0 + k ln
S

S0

In entrambi questi esempi ho descritto dei parametri biologici che dipendono dal logaritmo
di quelli fisico/ambientali, cioè dalla loro scala. Per questo il logaritmo dovrebbe essere il
migliore amico dello scienziato ambientale.

In questo esempio ho mescolato ragionamenti fisiologici a questione matematiche. Distinguia-
mole. Questa è una assunzione del modello, che riassume semplificandole, delle osservazioni
empiriche di fisiologia:
(P) la variazione di percezione è proporzionale alla variazione specifica dello
stimolo.
In simboli matematici

∆p = k
∆S

S

Con questa equazione abbiamo terminato la formulazione del modello, perché abbiamo tro-
vato la legge che lega le quantità che ci interessano (in questo caso percezione e stimolo).
Da questo punto in poi usiamo solo, deduttivamente, la matematica per ottenere informa-
zioni da questo modello. Il primo passaggio che abbiamo fatto è stato di scrivere il rapporto
incrementale dello stimolo in funzione della percezione, poi siamo passati al limite, rifor-
mulando il modello in termini di velocità istantanea di variazione. Infine abbiamo risolto
l’equazione differenziale e abbiamo manipolato la soluzione con le regole degli esponenziali
e dei logaritmi:

S ′(p) = S/k, da cui S(p) = S0e
(p−p0)/k, o, equivalentemente p(S) = p0 + k ln

S

S0

.

Questa espressione ci dice che
(C) la percezione dipende linearmente dal logaritmo dello stimolo.
Si noti che l’affermazione (C), non è quella di partenza: l’ipotesi che usiamo per costruire il
modello è l’affermazione (P), l’affermazione (C) si ottiene deduttivamente da (P).

1.4 Leggi a potenza
Le leggi a potenza sono le funzioni del tipo

f(x) = axα.

Al variare di α queste funzioni hanno differenti aspetti. (puoi vedere il loro grafico su BDM
cap 4). Hanno una notevole rilevanza in fisiologia e anche in biologia.

Esercizio 4. Formiche giganti
Supponi di ingrandire una formica di un fattore ℓ, cioè di moltiplicare tutte e tre le dimensioni
spaziali per ℓ, immaginando di ottenere un organismo con le stesse caratteristiche della formica
originaria.
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Come varia la massa? Come varia l’area della sezione di una zampa? Come varia la pressione che
il peso esercita sulla sezione della zampa?

In questo esercizio si dà per scontato che la formica ingrandita abbia la stessa densità di
massa della formica piccola, cioè sia fatta delle stesse sostanze. Il volume scala con ℓ3,
poiché la densità e costante, anche la massa, che è pari alla densità per il volume, scala come
ℓ3. L’area della sezione della zampa, invece, scala come ℓ2, mentre la pressione, che è pari
alla forza (in questo caso la forza peso) diviso l’area della sezione, scala come

ℓ3/ℓ2 = ℓ

Ne segue che portare le dimensioni di una formica da un millimetro a un metro, aumenta la
pressione sulle zampe di mille volte.
Questo esempio serve per far notare che la biologica di un organismo ha la sua scala di
validità, e per cambiare scala sono necessari adattamenti fisiologici importanti.

Esercizio 5. Superfici e volumi
Nello sviluppo degli organismi, le crescite dei tessuti sono a volte fenomeni di superficie. È dunque
utile calcolare come scala la superficie all’aumentare del volume.
Poiché il volume V scala come la lunghezza al cubo, possiamo invertire questa relazione e affermare
che la lunghezza scala con V 1/3; la superficie scala come la lunghezza al quadrato, e dunque come
V 2/3.

L’esponente 2/3 che abbiamo ottenuto nell’esercizio si incontra spesso nelle leggi allometriche,
cioè nelle leggi che esprimono delle relazioni quantitative tra le parti degli organismi.
Per esempio, il peso dell’uovo degli uccelli va come il peso dell’uccello elevato alla 2/3,
considerando uccelli di specie differenti (vedi BDM esempio 5.2.10).

In questo grafico che ho preso da S.J. Gould Bravo brontosauro par. 7, “Le uova del kiwi e la
campana della libertà”, è riportato un tipo grafico il scala logaritmica “dal topo all’elefante”
(in questo caso dal colibrì al moa), cioè un grafico in cui sono riportate le dimensioni degli
organismi di uno stesso genere ma in scala logaritmica, che viene usata perché tra un specie
e l’altra c’è veramente un salto di scala.
Anche l’asse verticale di questo grafico è un asse logaritmico, e questo tipo di grafico viene
chiamato log-log. Nell’asse verticale sono rappresenti i pesi tipici delle uova e si nota come
la relazione tra le due grandezze sia lineare; in particolare la pendenza è 2/3. Dunque, se
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indichiamo con u il peso delle uova e con p il peso dell’uccello, il grafico ci dice che

lnu(p) = c+ 2/3 ln p

(la costante c non è determinabile dal grafico, ma non è 0, perché il punto in basso a destra
non è l’origine). Determiniamo u(p): passando all’esponenziale

elnu(p) = ec+2/3 ln p = ec × eln p2/3 = 2cp2/3

Questo esempio serve a ricordare che se il grafico in scala log-log è una retta, allora la
relazione tra le grandezze è data da una legge a potenza. Nel caso del grafico in scala log, in
cui solo l’asse verticale è logaritmico, si ottiene invece una legge esponenziale.

Concludo per completezza l’esempio del kiwi. Il kiwi ha un uovo di dimensioni spropositate
in relazione alla dimensione dell’individuo. Varie spiegazioni “darwiniane’ vengono date
per questo fatto, Gould e altri suggeriscono che il kiwi sia una versione “nana” di uccelli
ora estinti, della dimensione del moa. Per suffragare questa tesi, osservano che l’esponente
che lega il peso delle uova e il peso totale tra individui della stessa specie è circa 0.15, e
non 2/3 (in generale la potenza delle leggi allometriche intraspecifiche è differente e più
piccolo dell’esponente nel caso di leggi interspecifiche). Dal grafico si vede come il punto che
rappresenta il kiwi sia, in scala log-log, sulla retta di pendenza 0.15 che passa per il punto
che rappresenta il moa.

Esercizio 6.

Nell’ultimo esempio ho ipotizzato che l’asse rappresentasse il logaritmo naturale, dunque da lnu =
c+ 2/3 ln p ho ottenuto

u = ap2/3,

con a = ec. Come cambia questa legge se suppongo che sugli assi ci fossero i logaritmi in base 10?

Esercizio 7. Assi logaritmici

Nel grafico è disegnato una asse orizzontale logaritmico.
Disegna i punti 5, 50, 500.
Disegna il punto

√
10 ≈ 3.2.

Dove andrebbe disegnato lo 0 in questo grafico?

Può essere utile osservare il grafico della funzione log, il logaritmo in base 10.
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La soluzione di questo esercizio è parzialmente nel grafico seguente

I segna-numeri tra 1 e 10 corrispondono ai valori 2, 3, . . . 9, quelli tra 10 e 100 corrispondono
ai valori 20, 30, . . . 90, etc.

Esercizio 8. Metabolismo
Negli anni 30 il biologo M. Kleiber studiò la relazione tra il metabolismo basale dei carnivori e il loro
peso. In un grafico log-log, in base 10, il valore del metabolismo m espresso in ml di O2 emessi in
un’ora, è legato al peso p espresso in grammi, da una legge lineare di intercetta 0.6 e di coefficiente
angolare 0.7.
Scrivere la legge M(p).

Esercizio 9. Cervelli
Supponendo che il peso C del cervello dei primati, espresso in grammi, sia legato con la seguente
legge a potenza al peso P dell’animale, espresso in kg:

C = 60× P 1/4

Calcola i parametri della legge lineare che vedresti in un grafico log-log in base 10.

Come cambia la legge se misuri P in grammi? E come cambia la retta?
Come cambia la legge se misuri C in chilogrammi? E come cambia la retta?
Come cambia la retta se il grafico log-log è in base e?

Esercizio 10. Effetti delle PM2.5
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Ho preso la figura che segue da un articolo sugli effetti della presenza di PM2.5 sull’intensità della
radiazione solare RS a banda larga sul cielo di Pechino.

Sono mostrati i dati e la curva che li approssima meglio (vedremo in seguito come si costruisce).

Quale asse dovrebbe essere logaritmico per vedere una retta?

Nella figura seguente sono mostrati i dati medi annui di RS e PM2.5.

Si noti che le due leggi lineari scritte in figura non sembrano coerenti con le scale. Si scrivano le leggi
lineari (approssimate) che esprimono RS in funzione dell’anno A, e PM2.5 in funzione dell’anno A.
(Suggerimento: si utilizzi l’espressione per la retta tra due punti notando che sulla retta rossa RS

vale circa 370 nel 2005, e circa 350 nel 210; si proceda analogamente per PM2.5).

È coerente questa immagine con i dati dell’immagine precedente? Quale sarebbe l’espressione di
RS in funzione di PM2.5 che si dovrebbe dedurre da questa figura?
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1.5 Esercizi di richiamo

Esercizio 11. Leggi lineari
a) Sia (2− r)/3 = (3s+ 5)/7. Esprimi r in funzione di s, e esprimi s in funzione di r.

b) Se (p+ a)/b = (b− 2q)/a

Come si esprime q in funzione di p?

Come si esprime p in funzione di q?

c) Trova p in funzione di q sapendo che se p vale 2, q vale 3, se p vale 3, q vale 2.

d) Trova p in funzione di q sapendo che se p vale p̄, q vale q̄, se p vale p0, q vale q0.

e) Supponi che p = 2q + 3 e s = 5q − 1. Esprimi p in funzione di q, ed esprimi q in funzione di p.

f) Supponi che ∆p/∆q = −2, e p vale 3 se q vale 4. Scrivi p in funzione di q.

g) Un variazione di un grado Celsius corrisponde a una variazione di 1.8 gradi Fahreneit. Inoltre la
temperatura di congelamento dell’acqua, di 0 gradi Celsius, è pari a 32 gradi Fahreneit. Scrivi
le formule di trasformazione da gradi Celsisus a Fahreneit e viceversa.

h) Il peso di un neonato aumenta di circa 30 grammi al giorno. Determina il peso in funzione del
tempo, sapendo che nel suo settimo giorno di vita il suo peso è di 3.79 kg. Quanto pesava il
terzo giorno? Quanto peserà il decimo? Quando supererà i 4 kg?

Esercizio 12. Proprietà degli esponenziali
Rendi più “semplice” le seguenti espressioni:

a) 103 × 105 =

b) 30 =

c) 61 =

d) 2−1 =

e) 2.54 × 2.5−1 =

f) 42
3
=

g) (42)
3
=

h) 52 × 5−3/5−1 =

i) (ab2)5 =

j) (a/b2)−1 =

Esercizio 13. Proprietà dei logaritmi

a) log(ab) =
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b) log ab =

c) log10 10 =

d) log10 10
−3 =

e) 10log10 14 =

f) 10log10 14
4
=

g) 104×log10 14 =

h) log 1 =

i) log 104 =

j) ln 104 =

k) Esprimi un numero a in funzione di 10a.

l) Esprimi un numero a in funzione di ea.

m) Esprimi un numero a > 0 in funzione di ln a.

Esercizio 14.
Considera la legge di crescita esponenziale

N(t) = 1000× 1.1t/3.

Riscrivila utilizzando la base e; riscrivila utilizzando la base 10, riscrivila utilizzando la base 2.
Determina in quanto tempo N aumenta del 50%, in quanto tempo raddoppia, e in quanto tempo
decuplica.
In quanto tempo N(t) diventa 106?
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Capitolo 2

Modelli di evoluzione

In questo capitolo illustrerò i concetti di base della modellistica matematica, attraverso alcuni
esempi significativi.
Ritorniamo al semplice modello della duplicazione batterica. Il modello consiste in una
legge, espressa in forma matematica, che permette di determinare il futuro, conoscendo
il presente. Nel caso della duplicazione batterica, l’assunzione del modello è che il numero
di batteri raddoppia ogni ora. Se conosciamo la numerosità N all’ora t, che indicheremo
come N(t) (il “presente”) possiamo determinare la numerosità all’ora successiva, cioè N(t+1)
(il “futuro”), mediante la formula

N(t+ 1) = 2N(t)

Puntualizzo: in questa “legge di aggiornamento” non c’è scritto il valore della numerosità
N , c’è solo la regola per determinare il futuro conoscendo il presente. Per conoscere concre-
tamente N(t) è necessario conoscere il dato iniziale, per esempio la numerosità al tempo
t = 0, che chiamo N0.
Tutte le informazioni sul sistema sono dunque calcolabili a partire da queste due informazioni:{

N(t+ 1) = 2N(t)

N(0) = N0

(in matematica questo sistema prende il nome di “problema ai dati iniziali”). Infatti se
vogliamo conoscere N(4) basta raddoppiare per 4 volte il valore di N0, cioè N(4) = 24N0 =
16N0. È importante notare che il “dato iniziale” non deve necessariamente essere quello al
tempo 0. Per esempio se fissiamo N(10) = 10 000 siamo comunque in grado di prevedere
N(12) = 40 000, e siamo in grado di ricostruire il passato. Per esempio, per calcolare
N(8) dovremo dividere due volte per due N(8) = 10 000/4 = 2500.

Chiameremo soluzione la funzione N(t). Dalla legge che governa il modello siamo in grado
di trovare una semplice espressione matematica per N(t)

N(t) = N02
t

Se invece fissiamo il dato iniziale N0 al tempo t0, la legge diventa

N(t) = N02
t−t0

Esercizio 15. Modello lineare
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Un aspetto quantitativo F di un fenomeno naturale si evolve con velocità di variazione costante a.
Ipotizzando che F valga F0 al tempo t0, determinare l’espressione di F (t).

Riposta: F (t) = F0+ a(t− t0) infatti F al tempo t deve essere uguale a F0 più la variazione,
che è proporzionale al tempo passato t− t0, con coefficiente a.

Modelli alle differenze e modelli differenziali

I due esempi precedenti sono formulati in modo lievemente differente: per il modello di
duplicazione ho fornito la regola per calcolare l’avanzamento nel tempo, per il modello lineare
ho dato un valore alla velocità di variazione. Il modo più utile di formulare un modello è
proprio quest’ultimo.
Torniamo alla duplicazione: invece di scrivere N(t+ 1) = 2N(t) posso scrivere

N(t+ 1)−N(t) = N(t)

a sinistra compare la differenza tra futuro e presente, e a destra c’è solo il presente. Noto
anche che N(t + 1) − N(t) è la velocità media di variazione in un’ora. Dunque anche il
modello di duplicazione si può formulare in termini di velocità di variazione.

Il vantaggio di questo modo di fare è che ci consente di prendere in considerazione anche le
velocità istantanee.

Un modello differenziale è un modello in cui viene specificata la velocità istantanea di
variazione in funzione dello stato presente. Per esempio il modello esponenziale è governato
dalla legge

N ′(t) = αN(t)

N(t0) = N0

Abbiamo già trovato la soluzione per un problema di questo tipo: le funzioni che verificano
N ′ = αN sono solo le funzioni N(t) = ceαt, con c costante arbitraria. Imponendo il dato
iniziale

N0 = N(t0) = ceαt0

e dunque c = N0e
−αt0 , e infine si ottiene

N(t) = N0e
α(t−t0).

Questo tipo di modello descrive in particolare la crescita malthusiana delle popolazioni: si
fissa un intervallo di tempo di riferimento, per esempio un anno, si assume costante il tasso di
natalità n =numero di nati/ numerosità della popolazione, e il tasso di mortalità m =numero
di morti / numerosità. Dunque

N(t+ 1)−N(t) = (n−m)N(t)

Da questa legge si scopre che N(t) = N(0)(1+n−m)t = N(0)et ln(1−n−m), (questo passaggio
l’ho già fatto nel primo paragrafo). Derivando in t si ottiene il modello differenziale con α =
ln(1+n−m) Se α > 0 (cioè se il tasso di natalità supera quello di mortalità) la popolazione
cresce esponenzialmente. Se accade il contrario, la popolazione decresce esponenzialmente.
Se n = m, il modello prevede la costanza della numerosità popolazione.
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Un altro fenomeno naturale governato da questo modello è il decadimento esponenziale delle
sostanze radioattive: in numero di atomi di un isotopo radioattivo che decadono in una
unità di tempo è proporzionale al numero complessivo di atomi. In altri termini, il tasso di
“mortalità” degli atomi è costante. Più in generale, il modo più semplice e ragionevole di
modellizzare quantitativamente fenomeni di mortalità o piú in generale di trasformazione è
assumere tassi costanti. Per esempio, nei modelli di crescita tumorale si assume che il tasso
di mortalità naturale delle cellule sia costante, nei modelli di epidemia si assume che il tasso
di guarigione dei malati sia costante (che vuol dire che il numero di malati che guarisce in
un intervallo di tempo fissato è proporzionale al numero di malati).

Faccio un esempio concreto. Il carbonio-14 si dimezza in circa 5730 anni, dunque se M(t) =
M(0)2−t/5730 (la massa subisce t/5730 dimezzamenti in t anni. Riscrivendola come legge
esponenziale in base e: M(t) = M(0)e−at, con a = ln 5730 = 8.65, e quindi

M ′(t) = −aM(t)

è la massa al tempo t.

Fin’ora abbiamo analizzato tre leggi di variazione: a velocità costante, a tasso di crescita
costante (natalità), a tasso di decrescita costante (mortalità). Ci sono molte situazioni
interessanti in cui possono essere coinvolti più fattori (già nel modello di Malthus abbiamo
considerato natalità e mortalità).

Per esempio ci possiamo chiedere come varia la quantità di carbonio 14 nell’atmosfera, tenen-
do presente che si forma per l’interazione tra i raggi cosmici e l’atmosfera (per la precisione
con l’azoto-14). Assumiamo l’ipotesi ragionevole che l’azione dei raggi cosmici sia costante,
e che la quantità di azoto-14 nell’atmosfera sia costante. Trascuriamo per il momento che il
14C decade: ci sarebbe un aumento della massa a velocità costante dovuto ai raggio cosmici.
Indichiamo con q questa velocità costante di accrescimento della massa. Complessivamente,
la velocità di variazione di M(t) avrà dunque due contributi: uno di decadimento pari a
−aM , l’altro di accrescimento a velocità costante, pari a q. Quindi

M ′(t) = −aM(t) + q

Anche di questa equazione differenziale si può trovare la soluzione esplicita, ma per ora
preferisco provare a studiare l’equazione senza risolverla.

Nel seguente grafico sono riportati in ascissa i possibili valori di M , e in ordinata i corrispon-
denti valori di M ′, calcolati con la legge −aM + q. Poiché si tratta di una legge lineare, il
grafico è una retta, con intercetta q, e con intersezione dell’asse nel punto M̄ = q/a.
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Se M è nell’intervallo (0, q/a) = (0, M̄), il valore della funzione è positivo, dunque la velocità
di crescita è positiva e quindi M deve aumentare. Al contrario se M > M̄ , la velocità di
crescita è negativa, e dunque M deve diminuire. Se invece M = M̄ = q/a la velocità è zero,
dunque non ci sarà variazione. Questi punto è un punti di equilibrio. Si noti che è anche
attrattivo, perché se si parte da un valore di M di poco a destra o di poco a sinistra, M
si avvicina e tende a M̄ . Diremo anche che questo equilibrio è stabile, proprio perché se si
parte a lì vicino, M non si può allontanare.

Cosa vediamo in natura? In genere vediamo gli equilibri stabili (e più in particolare quelli
attrattivi). Per esempio, non riuscite a mettere facilmente una penna in verticale sulla punta,
perché è un equilibrio instabile. In questo esempio del carbonio, vediamo una concentra-
zione di 14C costante nell’atmosfera. A che serve dunque dunque il modello? Supponiamo,
come è accaduto in passato, che ci sia un consistente aumento dell’attività solare per un
tempo lungo qualche anno. In tal caso aumentano i raggi cosmici, il coefficiente q aumen-
ta, l’equilibrio M̄ cambia, e il modello predice quantitativamente come M(t) raggiunge il
nuovo equilibrio con il passare del tempo.

Per completare questo esempio, la soluzione esplicita del modello è

M(t) = M0e
−at + M̄(1− e−at)

Nel grafico seguente sono rappresentate le soluzioni in funzione del tempo, al variare del
dato iniziale M . Questa volta sull’asse orizzontale c’è il tempo, su quello verticale il valore
di M(t), dunque le curve che vedete disegnate sono le possibili soluzioni in funzione del
tempo. Il dato iniziale di ogni curva si legge sull’ordinate dell’asse verticale.
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In arancione è disegnata la retta orizzontale che rappresenta la soluzione stazionaria.

Un’ultima importante osservazione. Quando siamo all’equilibrio, matematicamente tutte le
funzioni in gioco sono costanti: in questo caso M ′ = 0 e −aM + q = 0, cioè M = q/a. Dal
punto di vista del fenomeno, però l’equilibrio è dinamico: il 14C viene creato con velocità
q e si autodistrugge con velocità aM̄ . Il fatto che la velocità di creazione sia uguale a quella
di distruzione caratterizza la situazione di equilibrio.

2.1 Modelli a compartimenti

Il modello che abbiamo discusso per il 14C è un esempio semplice di modello a comparti-
menti, che descrive il flusso di una certa sostanza in zone differenti o in ambienti differenti.
Per essere più chiaro, nel modello considerato la variabile M(t) è la massa di carbonio 14C
nell’atmosfera, che lasciata a se stessa decade con tasso costante, però interagisce con un
altro compartimento (non fisico, ma concettuale) che chiamerò genericamente “esterno”, in
cui invece il 14C viene prodotto.
Consideriamo un altro esempio un po’ più complesso, la diffusione del mercurio nei orga-
nismi, per esempio pesci. (questo e alcuni degli esempi sono ispirati da J.H. Matis, T.E.
Wehrly Compartmental Models of Ecological and Environmental Systems in G.P. Patil, C.R.
Rao Environmantal Statitics handobbok of statistic 12, North-Holland 1994). Si può
immaginare di descrivere questo fenomeno con tre compartimenti:

• l’esterno (qui l’acqua), in cui si può pensare ci sia una quantità costante di mercurio

• il compartimento 1, cioè i tessuti dell’organismo che assorbono il mercurio dall’estero
(apparato digerente, sangue) e che in parte lo rilasciano all’esterno, e in parte a tessuti
più “interni”, per esempio le ossa

• il compartimento 2, cioè i tessuti interni, che non interagiscono con l’esterno, ma solo
con il compartimento 1
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Proviamo a scrivere in astratto il modello differenziale che governa questo fenomeno. Indiche-
rò con x1(t) la concentrazione di mercurio nel compartimento 1, con x2(t) la concentrazione
di mercurio nel compartimento 2.
La velocità di variazione di x1 avrà

• un contributo positivo costante dovuto all’esterno, che chiamerò s1 (s da sorgente);

• un contributo di espulsione del mercurio verso l’esterno che sarà però proporzionale
alla quantità di mercurio presente, e dunque sarà della forma −a1x1

• un contributo di trasferimento al compartimento 2, anche questo proporzionale, del
tipo −a12x1

• un contributo di trasferimenti dal compartimento 2, che sarà proporzionale a x2, e
dunque del tipo a21x2

Si noti la scelta della notazione: a1 è il coefficiente relativo all’interazione con l’esterno, a12
quello relativo al contributo del primo compartimento T verso il secondo compartimento, e
a21 viceversa. Questi numeri non sono necessariamente uguali.
La velocità di variazione di x2 si determina ragionando nello stesso modo, però manca il
contributo di provenienza dall’esterno (s2 = 0), e manca il contributo di trasferimento verso
l’esterno (a2 = 0).
In definitiva {

x′
1 = −(a1 + a12)x1 + a21x2 + s1

x′
2 = +a12x1 − a21x2

Si noti che poiché il mercurio non viene distrutto nel trasferimento, il termine di crescita del
mercurio nel compartimento 1, dovuto al trasferimento dal compartimento 2, deve bilanciare
esattamente il contributo di decrescita del mercurio nel compartimento 2, dovuto al trasfe-
rimento verso il compartimento 1. Lo stesso vale per il trasferimento dal compartimento 2
al compartimento 1.

Questo sistema è più complesso rispetto all’esempio precedente, perché coinvolge due fun-
zioni. È ancora relativamente semplice perché è un modello con velocità di variazioni lineari
(infatti è ancora matematicamente esplicitamente risolubile).

Vediamo se ci sono equilibri, che indicherò con x̄1 e x̄2. Se il sistema è in equilibrio, entrambe
le velocità di variazione x′

1 e x′
2 devono essere zero. Dunque i secondi membri devono essere

nulli all’equilibrio, cioè {
− (a1 + a12)x̄1 + a21x̄2 + s1 = 0

a12x̄1 − a21x̄2 = 0

Guardiamo prima la seconda equazione. Affinché sia verificata, deve accadere

a12x̄1 = a21x̄2

Questa relazione ha un evidente significato: all’equilibrio, la velocità con cui il mercurio passa
da 1 a 2, deve essere identica alla velocità con cui il mercurio passa da 2 a 1. Ricaviamo
dunque x̄2 = x̄1a12/a21. Inserendo questo valore nella prima equazione otteniamo

−(a1 + a12)x̄1 + a121̄2 + s1 = 0
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cioè

−a1x̄1 + s1 = 0, da cui x̄1 = s1/a1

Anche questa uguaglianza ha un chiaro significato: poiché all’equilibrio il flusso netto di
mercurio tra i compartimenti 1 e 2 è nullo, il valore di equilibrio della concentrazione di
mercurio nel compartimento 1 dipende solo dall’interazione con l’esterno. Infatti è lo stesso
equilibrio che si otterrebbe per il solo bilancio di x1 dato da x′

1 = −a1x1 + s1.

Riassumendo, abbiamo trovato un solo equilibrio

x̄1 = s1/a1, x̄2 = (s1a12)/(a1a21).

Esistono metodi matematici per controllare la stabilità e l’attrattività di questo equilibrio,
ma non ne parlerò. Mi limito a far vedere il grafico di diverse soluzioni, che si ottengono
cambiando il dato iniziale.

Attenzione: questo grafico è diverso dai due precedenti, perché viene rappresentato il piano
delle due variabili x1 e x2, Non potendo disegnare il tempo (si potrebbe fare con la terza
dimensione, ma non si otterrebbe un grafico più leggibile), per comprendere l’andamento
temporale ho disegnato delle frecce.

●

x1

x2

Questi invece sono i grafici di x1(t) e x2(t) con dato iniziale x1(0) = 0, x2(0) = 0. In
orizzontale i rispettivi valori di equilibrio.
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Esercizio 16. Idrologia delle paludi di Okenfenkee
Lo studio del flusso delle acque in una regione paludosa viene diviso in 4 compartimenti:

• A - l’altopiano, su cui si accumulano le acque piovane, e che può riceve acque di risalita dal
sostrato roccioso;

• R - il sottosuolo roccioso dell’altopiano, che riceve acque solo dall’altopiano

• P - la superficie della palude, che riceve acque dall’altopiano, dal sostrato roccioso, e dal
sostrato sabbioso sotto la palude

• S - il sostrato sabbioso sotto la palude, che riceve acque dalla palude e dal sostrato roccioso
dell’altopiano.

Scrivere un ragionevole sistema differenziale per il flusso delle acque in questo sistema, scegliendo
quali coefficienti sono nulli.

2.2 Il modello di Verhulst
In natura non si vedono frequentemente crescite malthusiane di popolazioni. Uno dei casi più
evidenti è quello della popolazione umana: a meno di guerre e pestilenze, in epoca storica
è in espansione esponenziale. Altri casi si osservano nel caso di colonizzazioni di habitat
favorevoli. Per esempio si pensi alla diffusione esponenziale di alcuni virus di altri animali
che con mutazioni favorevoli si sono adattai agli ospiti umani. Oppure si pensi all’espansione
di popolazioni animali che colonizzano un’isola vulcanica di recente formazione, o ancora
alla crescita esponenziale di una “specie aliena” che l’uomo introduce in zone lontane da
quelle originarie (una storia estremamente interessante è quella dei conigli in Australia, e
delle ulteriori specie aliene introdotte per tentare di controllarne la proliferazione).

Il motivo per cui si osservano raramente crescite esponenziali è che esiste un meccanismo che
fa crescere il tasso di mortalità (o decrescere il tasso di natalità) se la popolazione è troppo
numerosa e diventa difficile l’accesso alle risorse.

28



La prima modifica del modello di Malthus che tiene conto di questo effetto è dovuta a
Verhulst: N ′ = β

(
1− N

K

)
N

N(0) = N0

con β e K parametri positivi. Questa volta il tasso di crescita istantaneo N ′/N non è costante
ma vale

N ′/N = β

(
1− N

K

)
Vediamo di capire come si comporta questo sistema, aiutandoci con un grafico, in cui in
ascissa consideriamo i possibili valori di N , e in ordinata i corrispondenti valori di N ′, come
descritti dalla legge.

La funzione di N che compare al secondo membro è una parabola, che passa per l’origine,
ha la concavità rivolta verso il basso, e si annulla in due punti: N = 0 e N = K.
Se N è nell’intervallo (0, K), il valore della funzione è positivo, dunque la velocità di crescita
è positiva e quindi N deve aumentare. Al contrario se N > K, la velocità di crescita è
negativa, e dunque N deve diminuire. Se invece N = 0 o N = K la velocità è zero, dunque
non ci sarà variazione. Questi due punti sono punti di equilibrio.

• N = 0 è un equilibrio instabile, perché appena ci si sposta un po’ N comincia a
crescere

• N = K è un equilibrio stabile, perché sia se ci si sposta di poco a destra, sia se ci si
sposta i poco a sinistra, N si riavvicina a K.

Per questo sistema si può scrivere anche l’espressione esplicita della soluzione, che è

N(t) =
KN0

N0 + (K −N0)e−βt

Naturalmente il grafico di questa funzione dipende dal valore di N0 Lo rappresento nel
prossimo grafico, in cui stavolta sull’asse orizzontale c’è il tempo, su quello verticale c’è
N(t).
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Da questo grafico si possono trarre le stesse conclusioni che abbiamo fatto studiando il grafico
di N ′ in funzione di N . Se N0 = 0 o se N0 = K il sistema è in equilibrio. Se N0 è tra 0,
e K, N(t) cresce (e se è vicino a 0 cresce esponenzialmente), poi la curva si piega e tende a
K per t → +∞. Se invece N0 > K, N(t) decresce e tende a K per t → +∞.

2.3 La funzione logistica

Studiando per t < 0 l’espressione di N(t), si vede che N(t) tende a 0 per t → −∞. Questa
funzione N(t) dunque parte da 0 a −∞ e raggiunge K a +∞, con una forma quasi a S. Fa
parte delle cosiddette funzioni logistiche o anche sigmoidi, che hanno una grande importanza
nella descrizione di vari fenomeni.
L’espressione base di queste funzioni è

f(x) =
1

1 + e−x

che per unisce 0 (per x → −∞), a 1 (per x → +∞), e vale 1/2 per x = 0. Inoltre ha grafico
simmetrico rispetto al punto (0, 1/2).
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Aggiungiamo ora un parametro, e consideriamo

fβ(x) =
1

1 + e−βx

con β numero positivo. I grafici di queste funzioni sono tutti uguali, a parte il riscalamento
nella variabile x. Per vedere il valore f(1), basta mettere x = 1. Ma per vedere il valore
f(1) usando la funzione fβ, è necessario porre βx = 1, cioè x = 1/β. In pratica dobbiamo
rimpicciolire la variabile x di un fattore β.
Nella figura seguente sono riportati i grafici per β da 1 a 5. Come si vede, al crescere di β,
il grafico si schiaccia su metà delle rette orizzontali.

Nel limite β → +∞, si ottiene una funzione che in matematica si chiama ϑ, definita in questo
modo

ϑ(x) =


0 se x < 0

1/2 se x = 0

1 se x > 0

Questa funzione è il prototipo della modellizzazione dei fenomeni a soglia, per esempio
l’attivazione di un neurone. Se l’intensità dell’input (cioè del segnale di ingressi) è inferiore
al valore di soglia, in questo caso 0, il neurone non emette nulla, appena diventa superiore al
valore di soglia, il neurone emette il suo segnale, indipendentemente dall’intensità dell’input.
Si può pensare alla famiglia di funzioni fβ, con β grande, come a una approssimazione
morbida della funzione di soglia ϑ: il neurone emette sempre un po’ di segnale, ma si vede
una sensibile differenza solo al passaggio del valore di soglia 0.
Vale la pena fare qualche osservazione sulla simmetria. Il grafico della funzione fβ è evi-
dentemente simmetrica rispetto al punto (0, 1/2). Cerchiamo una prova algebrica di questo
fatto valutando la differenza tra la funzione e 1/2:

fβ(x)−
1

2
=

2− 1− e−βx

2(1 + e−βx)
=

1

2

1− e−βx

1 + e−βx
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Moltiplichiamo numeratore e denominatore dell’ultima frazione per eβx/2. Si ottiene

fβ(x)−
1

2
=

1

2
+

1

2

eβx/2 − e−βx/2

eβx/2 + e−βx
. (2.3.1)

A questo punto è facile notare che se scambiamo x con −x l’ultima frazione cambia solo di
segno, e dunque fβ(x)− 1

2
cambia solo di segno. Questa è appunto la simmetria rispetto al

punto (0, 1/2).

È semplice costruire una funzione a soglia che invece di andare da 0 a 1, va da s, valore
sinistro, a d, valore destro. Ragioniamo in questo modo: ϑ copre una variazione ampia
1 = 1− 0, mentre la funzione che cerchiamo deve coprire una variazione d− s. La funzione
(d − s)ϑ(x) fa esattamente questo, ma va da 0 a d − s. Per ottenere a sinistra il valore s
basta sommarlo. La funzione cercata è

s+ (d− s)ϑ(x).

Per esercizio, si provi che

s+ (d− s)fβ(x− x0) =
d+ se−β(x−x0)

1 + e−β(x−x0)

è la versione morbida della funzione di soglia che unisce s a d, con la soglia in x0. Usando la
(2.3.1), si ottiene l’espressione alternativa

s+ d

2
+

d− s

2

eβ(x−x0)/2 − e−β(x−x0)/2

eβ(x−x0)/2 + e−β(x−x0)/2
.

da cui si vede la simmetria rispetto al punto (x0, (s+ d)/2).
Più in generale, una funzione logistica ha l’aspetto

g(x) =
d+ se−β(x−x0)

a+ be−β(x−x0)

In questo caso, il valore di soglia è ancora x0, la funzione va dal valore s/b a −∞ al valore
d/a a +∞. Se a = b la funzione è simmetrica rispetto a (x0, g(x0)) e si riduce all’espressione
precedente, dividendo d e s per a; altrimenti la funzione non è simmetrica.

2.4 Cinetica chimica
In questo esempio vedremo per la prima volta come si può modellizzare l’interazione tra
due variabili che descrivono un fenomeno. Negli esempi precedenti, o avevamo a che fare
con un’unica variabile, oppure, nei modelli a compartimento, le diverse variabili rappresen-
tavano la quantità o la concentrazione di una stessa grandezza, ma all’interno di diversi
compartimenti.
Supponiamo di sapere che è possibile la reazione chimica che unisce l’elemento X e l’elemento
Y per formare un composto XY . Le variabili del sistema sono le concentrazioni dei tre
elementi:

x = [X], y = [Y ], z = [XY ]

La variazione della concentrazione di X avrà due termini: uno di accrescimento, dovuto
al fatto che XY si decompone nei suoi elementi costitutivi. Come sempre modellizzeremo
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questa velocità di decomposizione con un termine proporzionale alla concentrazione β[XY ].
L’altro termine sarà di decrescita, e sarà dovuto al fatto che molecole di X e di Y si incontrano
e formano XY . Questo termine deve essere proporzionale a [X], infatti più X c’è, più XY
si forma, ma deve anche essere proporzionale a [Y ], per lo stesso motivo, dunque

[X]′ = −α[X][Y ] + β[XY ]

A questo punto è semplice scrivere le altre equazioni, infatti anche [Y ] varia per gli stessi
motivi, e con la stessa legge, infine [XY ] si crea a velocità α[X][Y ], e si distrugge a velocità
β[XY ]. Riassumendo 

[X]′ = −α[X][Y ] + β[XY ]

[Y ]′ = −α[X][Y ] + β[XY ]

[XY ]′ = α[X][Y ]− β[XY ]

Si noti che [X]′+[XY ]′ = 0, così come [Y ]′+[XY ]′ = 0. Questo non deve sorprendere, perché
[X] + [XY ] è la somma della concentrazione di X libera, e di quella di X legata. Il totale,
che indicherò con x, non può cambiare nel tempo. Lo stesso accade per [Y ] + [XY ] = y che
è la concentrazione totale di Y . È facile vedere che l’equilibrio si ottiene per

α[X][Y ] = β[XY ]

Riscrivendo tutto in funzione di [XY ]:

α(x− [XY ])(y − [XY ]) = β[XY ]

Per esercizio, si risolva questa equazione di secondo grado, mostrando che c’è una sola so-
luzione positiva minore di x e di y, che è l’unica accettabile. Anche questo equilibrio è di-
namico: anche se le concentrazioni sono costanti, avvengono continuamente trasformazioni,
ma perfettamente bilanciate.
Si osservi infine che usando i valori costanti x e y, si può riscrivere la terza equazione nella
sola variabile [XY ]:

[XY ]′ = α(x− [XY ])(y − [XY ])− β[XY ]

Per esercizio si provi che questo sistema ha due equilibri, che quello minore è stabile e
attrattivo, che quello maggiore è instabile, e che è fisicamente da scartare perché prevede
[XY ] superiore al totale di X e di Y .

Ripeto: il motivo di questo esempio è di fare la conoscenza di termini di interazione di tipo
prodotto, potete trascurare la descrizione degli equilibri in questo esempio.

2.5 Interazioni di tipo Michaelis-Menten
Un’interessante variazione del modello precedente si ottiene quando si analizzano reazioni
in presenza di enzimi. Stavolta le variabili saranno [S], la concentrazione di sostrato, [E],
la concentrazione di enzima, il composto SE, che però si trasforma nel prodotto finale P e
libera l’enzima E.
Procedendo come nell’esempio precedente, e assumendo che SE in parte decada in S +E, e
in parte in P + E, si ottiene facilmente il sistema

[SE]′ = α[S][E]− (β + γ)[SE]

[S]′ = −α[S][E] + β[SE]

[E]′ = −α[S][E] + (β + γ)[SE]

[P ]′ = γ[SE]
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Si noti la differenza tra l’equazione per [S] e quella per [E], dovuta a fatto che il composto
[SE] si trasforma sia in S ed E, sia in S e P . Inoltre è utile notare che la quantità [E]+ [SE]
è pari alla concentrazione totale dell’enzima, che indicherò con e e che non può cambiare nel
tempo, come si vede sommando le due corrispondenti equazioni.

Cerchiamo gli equilibri. Guardando l’equazione per [P ] si capisce che deve essere [SE] = 0,
cioè non deve esserci composto. Inserendo questa condizione nelle altre equazioni si ottiene
che per l’equilibrio deve valere [S][E] = 0, quindi o [E] = 0, oppure [S] = 0. Si noti che
[SE]+[E] = e è concentrazione totale di enzima, perché è la somma di quello libero e di quello
legato, mentre [SE] + [S] è la concentrazione totale di sostrato. Possiamo imporre [E] = 0
solo imponendo che non ci sia enzima, caso che escludiamo in quanto non interessante. Se
invece imponiamo [S] = 0, stiamo imponendo che non ci sia sostrato. Il valore di [E] = e
invece è fissato, e [P ] può essere qualunque. Si noti che questi equilibri non sono dinamici:
tutti i singoli termini sono nulli. Si noti anche che fuori dall’equilibrio [P ] cresce, ma non
può crescere all’infinito. Tenderà dunque a una costante, e dunque [SE] tenderà a 0, quindi
anche [S][E] deve tendere a 0: in pratica tutto il sostrato viene trasformato in prodotto.
Una notevole semplificazione di questo modello si ottiene se si ipotizza che la reazione avvenga
con E in equilibrio dinamico, cioè

α[S][E] = (β + γ)[SE]

Poiché [E] = [SE]− e, usando queste due equazioni si ottiene [SE] in funzione di [S]:

[SE] =
αe[S]

β + γ + αe[S]

Notando che

[S]′ = −α[S][E] + β[SE] = −α[S][E] + (β + γ)[SE]− γ[SE] = −γ[SE]

si ottiene infine un sistema in cui non compare più il termine che coinvolge l’enzima ma solo
il bilancio tra [S] e [P ]: 

[S]′ = − αγe[S]

β + γ + αe[S]

[P ]′ =
αγe[S]

β + γ + αe[S]

Questo sistema predice che [S] decresce fino a 0, e in corrispondenza [P ] cresce fino all’esau-
rimento del sostrato. Si noti che la decrescita di [S] non è esponenziale: se [S] è grande, la
produzione di [P ] avviene quasi a velocità costante γ, per poi rallentare e diventare espo-
nenziale quando [S] diventa piccolo. Questo tipo di termine per la velocità di variazione è si
chiama proprio Michaelis-Menten, e racchiude in sé la parte di interazione con l’enzima, che
non compare più nell’equazione.
Riassumendo: un termini di tipo Michaelis-Menten è un termine di decrescita (o di crescita)
per una quantità x del tipo

α
x

a+ x

con a parametro positivo. Consideriamo dunque

x′ = α
x

a+ x
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che corrisponde ad assumere che il tasso istantaneo di variazione di x sia x′/x = α/(a+ x),
dunque decrescente in x. Se x è piccolo, il tasso vale circa α/a, e dunque il modello si riduce
al modello esponenziale (decrescente o crescente a seconda del segno di α). Se x è grande,
x′ è praticamente α cioè c’è una sorgente costante se α è positivo, è un prelievo costante se
α è negativo.
Questo tipo di termine può essere generalizzato come segue:

α
xk

ak + xk

con k ≥ 1. Anche in questo caso per x grande il termine è praticamente α, quindi dà una
sorgente o un prelievo costanti a seconda del segno di α. Invece, quando x è piccolo, il
termine è praticamente

α

ak
xk.

Per capire come si comporta questo termine consideriamo il corrispondente tasso di variazione

x′/x = αxk−1/ak,

che, per k > 1, tende a 0 se x → 0. Dunque questo termine dà una crescita o decrescita
molto lenta se x è piccolo. In particolare, per α = −1 con dato iniziale x0 risulta

x(t) =
x0

1 + tx0

,

che va a zero come 1/t, molto più lentamente dell’esponenziale negativo.
In sintesi, il termine di Michaelis - Menten generalizzato è un termine con tasso di variazione
che tende a 0 per x piccolo, e velocità di variazione costante per x grande.

2.6 Il modello SIR
Il modello SIR è il modello di base per l’evoluzione di un’epidemia “rapida”, cioè che si
evolva in tempi abbastanza brevi per non dover considerare nascite e morti naturali nella
popolazione (al contrario per esempio dell’epidemie di HIV che è in corso da vari decenni).
Inoltre si basa sull’ipotesi fondamentale che i guariti non si possano ricontagiare. Infine,
l’applicazione di questo modello va limitata ai casi di epidemica che riguarda un solo ospite,
e dunque è per esempio inadatto allo studio della diffusione della malaria, che si scambia tra
uomo e zanzara.
Le variabili sono: S, il numero di suscettibili, cioè degli individui che non si sono ammalati;
I il numero di persone infette e dunque contagiose, R, il numero di guariti (“rimossi”). Alla
luce degli esempi precedenti dovrebbe essere chiaro perché il modello ha questa espressione:

S ′ = −aSI

I ′ = aSI − bI = (aS − b)I

R′ = bI

Si nota subito che ci sono infiniti punti di equilibrio: se I = 0, tutte le variabili sono costanti
(assenza di epidemia). L’altra osservazione immediata che si può fare è che S è una funzione
decrescente, R è una funzione crescente, mentre I decresce se e solo se aS − b è negativo.
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Poiché S è decrescente, prima poi aS−b diventerà negativo, e quindi I comincerà a decrescere
e l’epidemia si estingue.
In una epidemia all’inizio del suo sviluppo, un ruolo cruciale è giocato dal fattore aS0 − b,
dove S0 è la numerosità della popolazione che si può ammalare. Si noti che aS0 − b < 0 se e
solo se

R =
aS0

b
< 1

Pensando all’epidemia attualmente in corso, il tracciamento dei positivi permette di metterli
in isolamento, quindi ai fini del contagio questo equivale a considerarli rimossi. Dunque
un buon tracciamento con isolamento domiciliare dai familiari equivale ad aumentare il
coefficiente b, e dunque a fare scendere R. Il distanziamento sociale e l’uso delle mascherine
si traducono invece in una diminuzione di a, perché rendono improbabile la trasmissione del
virus. Infine, la vaccinazione serve a ridurre S0. L’effetto di tutte queste misure è di ridurre
R. Se scende sotto 1, un’epidemia in corso si spegnerà, se non è ancora iniziata non inizierà
nemmeno.

Faremo delle simulazioni numeriche su questo modello. Qui riporto solo un conto un po’
sofisticato, che spiega la cosiddetta immunità di gregge.
Si noti che la prima equazione si può riscrivere come

d

dt
lnS = −aI

e che dalla terza equazione si ottiene I = R′/b. Dunque

d

dt

(
lnS +

a

b
R
)
= 0

Sapere che questa quantità è costante è molto utile. Supponiamo di considerare un’epidemia
all’inizio, in cui R(0) = 0, e S(0) = S0. Allora

lnS(t) +
a

b
R(t) = log S0

cioè
ln

S(t)

S0

+
a

b
R(t) = 0

Passando al limite per t → +∞, S andrà a Sf , cioè al valore finale di quelli che non si
sono ammalati, R andrà a Rf , il valore finale degli ammalati. Indico con r = Rf/S0 la
frazione complessiva di individui che si ammala. Pensano che il valore iniziale degli infetti
sia trascurabile, si può scrivere

Sf +Rf = S0 + I(0) ≈ S0

, e dunque
Sf/S0 = 1− r

La relazione scritta sopra diventa dunque un’equazione per r:

ln(1− r) = −a

b
Rf =

aS0

b
r = −Rr

Saper risolvere questa equazione è importante perché ci permette di predire il numero totale
di malati in funzione di R. Questa equazione ha la soluzione r = 0 per qualunque R (in
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assenza di epidemia non ci sono malati). Però per R > 1 appare un’altra soluzione, che
riporto nel grafico.
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Come si vede, per R < 1 c’è solo la soluzione nulla e dunque l’epidemia non si puó innescare.
Da R = 1 in poi la percentuale finale di contagiati cresce enormemente. Per esempio, se
R = 1.01, r ≈ 2%, se R = 1.1, r ≈ 18%, se R = 2, r ≈ 80%. Si capisce dunque la necessità
di tenere R più basso possibile.
Questo grafico spiega l’effetto gregge delle campagne vaccinali: non solo la popolazione
vaccinata non si ammala, ma se R scende sotto 1 non si ammala nemmeno la frazione di
popolazione non vaccinata.

2.7 Il modello Lotka-Volterra - orbite periodiche

Il primo modello con interazione che descrivo è il modello preda-predatore, anche detto
modello di Lotka-Volterra, dal nome dei due scienziati che lo definirono, indipendentemente,
circa un secolo fa.
Le variabili sono x(t), il numero di predatori, e y(t) il numero di prede. Senza prendere in
considerazione l’interazione tra queste specie, modellizziamo la velocità di cambiamento di
x con tasso costante di decrescita (non avendo accesso alle risorse i predatori si estinguono),
e la velocità di cambiamento di y con tasso costante di crescita (in assenza di limitazioni
dovute a predatori o scarsezza di risorse, il numero di prede è in crescita malthusiana).
Riflettiamo ora sull’effetto della presenza delle prede nel cambiamento del numero di pre-
datori. Deve trattarsi di un termine di crescita, che è ragionevole supporre proporzionale
al numero di prede: se raddoppio le prede, i predatori hanno a disposizione il doppio delle
risorse. Inoltre, sarà proporzionale al numero di predatori: se le prede venissero in conti-
nuazione rimpiazzate e messe a disposizione dei predatori, anche la numerosità dei predatori
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dovrebbe una crescita malthusiana, e questo è fenomeno è equivalente alla proporzionalità
della velocità di crescita alla numerosità. Dunque modellizziamo la velocità di variazione del
numero di predatori x(t) con l’equazione

x′ = axy − bx

Il secondo termine è quello di decrescita a tasso costante, il primo è quello di crescita a tasso
crescente con il numero di prede. Allo stesso modo, modellizziamo la velocità di variazione
del numero di prede y(t) con l’equazione

x′ = −αxy + βx

In questo caso, il secondo termine è quello di crescita a tasso costante, il primo è un termine
di decrescita con tasso che cresce con il numero di predatori.
Osservo che c’è un altro modo per spiegare la presenza dei termini xy: supponendo che le
y prede e gli x predatori si muovono casualmente in una stessa area, xy è proporzionale al
numero di incontri che possono avvenire nell’unità di tempo, dunque x è proporzionale al
numero di predatori che una singola preda può incontrare nell’unità di tempo, e dunque il
tasso di estinzione delle prede deve essere proporzionale a x.

Riassumendo {
x′ = axy − bx = (ay − b)x

y′ = −αxy + βy = (−αx+ β)y

È semplice trovare gli equilibri. Guardando la prima equazione, o x = 0, oppure y = ȳ = b/a.
Nel primo caso, inserendo il valore x = 0 nella seconda equazione, si ottiene che anche y deve
essere 0. Se invece uso y = ȳ, si ottiene che x = x̄ = β/α.

Come vedremo con le simulazioni, il comportamento del sistema è il seguente:

• (x, y) = (0, 0) è un equilibrio instabile;

• (x, y) = (x̄, ȳ) è un equilibrio stabile ma non è attrattivo;

• tutte le altre soluzioni sono periodiche

Commentiamo quest’ultima affermazione, riscrivendo il sistema in questo modo


x′ = axy − bx = a

(
y − b

a

)
= a(y − ȳ)x

y′ = −αxy + βy = −α

(
x− β

α

)
y = −α(x− x̄)y
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Osserviamo il grafico in figura, immaginando che il dato iniziale sia il punto (x0, y0), che
abbiamo scelto con x0 > x̄ e y0 > ȳ, cioè nella regione I. Le due equazioni ci dicono che
in questa regione x deve crescere e y deve diminuire. Questo andamento continuerà fino a
quando y non scende sotto ȳ, e la soluzione entra nella regione II. Qui y continua a decrescere,
ma anche x comincia a decrescere. Quando x passa x̄, la soluzione entra nella regione III, in
cui y ricomincia a crescere. Infine, quanto y passa ȳ, la soluzione entra nella regione IV, in
cui entrambe le variabili crescono. Quando x sorpassa x̄, la soluzione rientra nella regione I,
e torna esattamente al punto di partenza.

È istruttivo osservare l’andamento temporale della soluzione su un unico grafico. In ascissa
mettiamo il tempo, in ordinata i valori di entrambe le variabili, e disegniamo anche i valori
x̄ e ȳ. Come si vede, il massimo e il minimo del numero di predatori (in arancione), si
raggiunge nell’istante in cui il numero di prede (in verde), passa il valore di equilibrio. Lo
stesso accade al contrario.
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Un altro fatto importante che si può dimostrare con un po’ più di matematica, è che il valore
medio su un periodo della variabile x è sempre esattamente x̄, e quello della variabile y è
sempre esattamente ȳ (si tratta di un fenomeno che riguarda proprio questo modello, e non
è per niente generale). Dunque, anche se considero soluzioni che non siano di equilibrio, i
valori (x̄, ȳ) indicano i valori medi delle due variabili.

A questo punto è molto interessante chiedersi come variano (x̄, ȳ), se cambiano i parametri.
Per esempio se aumenta il nutrimento a disposizione delle prede, cresce il parametro β,
favorendo in teoria le possibilità delle prede. Ricordando però che

x̄ =
β

α
e ȳ =

b

a

si ottiene che il numero medio di prede non cambia, mentre aumenta il numero di predatori.
Al contrario, una maggior difficoltà di vita per i predatori (che si traduce in un aumento di b),
non ne cambia il numero, ma fa aumentare il numero delle prede, che possono prosperare più
facilmente. Questo esempio suggerisce che le interazioni ecologiche posso essere complesse, e
vanno comprese prima di poter fare valutazioni chiare sul significato ambientale dell’aumento
o della diminuzione di una popolazione.
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2.8 Il modello di Ross per la malaria

Il modello di Ross per la diffusione della malaria è interessante perché ci mostra altre possi-
bili modellizzazioni dell’interazione tra due specie, e perché suggerisce alcune riflessioni sul
controllo biologico.

È un modello per una epidemia che interessa due specie differenti, in cui la guarigione non
protegge dalla reinfezione. Ci sono due variabili in questo modello, il numero di zanzare
infette Z, il numero di umani infetti U . Ci sono un bel po’ di parametri:

• a il numero medio di punture che una zanzara fa nell’unità di tempo;

• p la probabilità di trasmissione del plasmodio a un uomo sano per una puntura di una
zanzara infetta;

• q la probabilità di trasmissione del plasmodio a una zanzara sana per una puntura a
un uomo infetto;

• b il tasso di guarigione degli uomini;

• β il tasso di guarigione delle zanzare;

• N il numero totale di umani;

• M il numero totale di zanzare

Il numero di contagiati umani cresce con una velocità che ha un contributo negativo bU , e un
contributo positivo che si determina in questo modo: le Z zanzare infette pungono aZ volte
nell’unità di tempo, quindi il numero medio di punture per singolo umano è aZ/N . Poiché
gli umani sani sono N −U , il numero aZ/N(N −U) rappresenta il numero di punture subite
dagli umani sani nell’unità di tempo. Moltiplicando questo valore per p (la probabilità di
trasmissione) si ottiene la prima equazione

U ′ = ap
Z

N
(N − U)− bU

Ragionando nello stesso modo, M −Z zanzare sane pungono a(M −Z)/N volte ogni uomo,
dunque

Z ′ = aq
M − Z

N
U − βZ

È più utile riscrivere questo sistema per le variabili z = Z/M , u = U/N , che sono le frazioni
si zanzare e uomini infetti rispettivamente. Si ottiene facilmente{

u′ = apRz(1− u)− bu

z′ = aq(1− z)u− βz

dove R = M/N è il rapporto tra numero di zanzare e numero di umani,
Come sempre, si cercano gli equilibri. Aiutati dalla fenomenologia che stiamo descrivendo,
siamo portati a supporre che z = 0, u = 0 sia un punto di equilibrio, che corrisponde
all’assenza della malattia. Infatti se si sostituiscono questi valori si ottiene effettivamente
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che i membri di destra delle due equazioni sono nulli. Possiamo chiederci se ci sono altri
equilibri. Imponendo che siano nulli i membri di destra si ottiene il sistema{

apRz(1− u) = bu

aq(1− z)u = βz

Si può risolvere con una piccola fatica che può essere ridotta dividendo tutte e due le equazioni
per zu. Si ottiene 

apR

(
1

u
− 1

)
= b

1

z

aq

(
1

z
− 1

)
= β

1

u

che è facilmente risolubile nelle variabili 1/u e 1/z, essendo un sistema lineare. Si ottiene
u =

a2pqR
bβ

− 1

a2pqR
bβ

+ aq
β

=
r − 1

r + aq
β

z =

a2pqR
bβ

− 1

a2pqR
bβ

+ apR
b

=
r − 1

r + apR
b

dove r = a2pqR
bβ

. Niente panico: dobbiamo solo capire se questa soluzione esiste e che cosa
vuole dire. I numeri che abbiamo ottenuto sono sicuramente minori di 1, però a seconda dei
valori dei parametri possono diventare negativi. I due numeratori sono identici, dunque u e
z sono positivi se e solo se

r > 1

Come vedremo con una esplorazione numerica, se questa soluzione esiste, è stabile e attrat-
tiva, mentre l’origine (u, z) = (0, 0) è una soluzione instabile. In questo caso la malattia è
endemica. Al contrario, se r ≤ 1, c’è solo l’equilibrio (u, z) = (0, 0) che è stabile e attrattivo,
dunque l’epidemia si estingue.
Ross comprese che l’unico parametro su cui si può agire in modo relativamente facilmente è
M , il numero di zanzare. Sotto una certa soglia r scende sotto 1, fermando l’epidemia. Na-
turalmente, è di aiuto anche poter aumentare b (la velocità di guarigione) o usare protezioni
che facciano scendere a (il numero di punture), anche in questo caso r si riduce.

Esercizio

Consideriamo un modello per i livelli trofici di un ecosistema, in particolare vogliamo mo-
dellizzare l’abbondanza di biomassa, presente all’interno di 5 compartimenti:

• N : disponibile nell’ambiente, sotto forma di componenti di base

• P : nei produttori primari (vegetali);

• H: negli erbivori

• C: nei carnivori

• D: nei decompositori, che ritrasformano biomassa in sostanze di base nell’ambiente

L’esercizio consiste nel provare a capire la relazione tra le variabili, e qual può essere un buon
modello che descrive il sistema.
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Capitolo 3

Biforcazioni, catastrofi, caos

Come ho già illustrato, i modelli differenziali permettono di studiare come evolvono nel tempo
alcuni fenomeni. In molti degli esempi che abbiamo fatto, al passare del tempo, il sistema
raggiunge un equilibrio stabile, anche se ci sono altre possibilità, come nel caso delle orbite
periodiche del sistema preda-predatore (nei prossimi paragrafi ne vedremo altre ancora).
In questo paragrafo affrontiamo gli effetti sugli equilibri di una modifica dei parametri.
Questo argomento è interessante per gli studi ambientali perché in natura spesso alcuni
parametri vengono più o meno lentamente modificati, si pensi agli affetti dell’azione umana
sul clima e agli effetti dei cambiamenti climatici sugli ecosistemi, In questi esempi, dunque,
considereremo dei modelli e ci chiederemo come cambia il loro comportamento al cambiare
dei parametri.

Per cominciare, riprendiamo l’analisi delle soluzioni stazionarie del modello di Ross. Indi-
pendentemente dal valore dei parametri, c’è sempre l’equilibrio (0, 0) (assenza di epidemia).
Inoltre c’è l’equilibrio


u =

a2pqR
bβ

− 1

a2pqR
bβ

+ aq
β

=
r − 1

r + aq/β

z =

a2pqR
bβ

− 1

a2pqR
bβ

+ apR
b

=
r − 1

r + apR/β

che dipende dal parametro positivo r = a2pqR/(bβ). Ricordo che u e z sono, rispettivamente,
le frazioni di umani e di zanzare infette, e dunque, anche se questa coppia di valori è sempre
una soluzione di equilibrio, essa ha un senso biologico solo se u e z sono compresi nell’inter-
vallo [0, 1], e questo accade se e solo se r ≥ 1. Ignoriamo questa condizione, e consideriamo
tutti i possibili valori di r ≥ 0. Rappresentiamo in un grafico le soluzioni al variare di r.
Considereremo la sola variabile u, ma ricordiamoci che in corrispondenza di u c’è anche a
variabile z, cioè che l’equilibrio riguarda la coppia di variabili.
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Nell’asse delle ascisse c’è il valore di r, in quello delle ordinate il valore di u. Nel grafico ci
sono due curve (che cambiano colore): l’asse delle ascisse, che rappresenta l’equilibrio u = 0,
e la curva crescente, che rappresenta l’altra soluzione, che cambia con r. Ho colorato in blu
la soluzione stabile, e in rosso la soluzione instabile. Come ho già discusso, la soluzione di
assenza di epidemia è stabile fino a r = 1, dopo diventa instabile, mentre l’altra soluzione,
quella endemica, diventa stabile.
Rispetto all’analisi che abbiamo già fatto, aver rappresentato la soluzione endemica anche
quando non è naturalisticamente accettabile perché negativa, ci permette di vedere meglio
l’aspetto matematico del cambiamento di stabilità. Quello che accade in questo caso è che,
attraversandosi, i rami delle due soluzioni si scambiano la stabilità.

Mostriamo ora con un esempio che possono accadere fenomeni più complicati, in particolare
alcuni modelli esibiscono un comportamenti “catastrofici”.

3.1 Un modello per l’eutrofizzazione

Per questo semplice modello mi sono liberamente ispirato all’articolo di Katherine Meyer
Mathematical Review of Resilience in Ecology, Natural Resource Modeling vol 29, 3 (2016).
L’eutrofizazazione delle acque di un bacino, per esempio un lago, ma anche un mare con poco
ricambio, è il fenomeno di accumulo di sostanze nutritive che induce una proliferazione di
organismi vegetali, in particolare fitoplancton, che rende inospitale l’ambiente per le specie
ittiche. Il modello che mi appresto a descrivere tratta la dinamica delle sostanze nutritive,
che si muovono tra tre compartimenti: l’acqua del bacino, le acque reflue (cioè quelle che
confluiscono nel bacino), e il fondale del bacino.
Indicherò con n(t) la concentrazione nell’acqua del bacino di una sostanza nutritiva (per
esempio l’azoto). Ci sono tre contributi alla variazione di n nel tempo:
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• arrivo di nutrimento dalle acque reflue, modellizzato con il termine di flusso costante
+ℓ, con ℓ ≥ 0;

• sedimentazione di n sul fondo, modellizzato con il termine di riduzione a tasso costante
−αn;

• restituzione di n dal fondo all’acqua, modellizzato con un termine di tipo Michaelis-
Menten generalizzato: +r nk

ak+nk , con r, a > 0. Per semplicità poniamo k = 2, a =
1.

L’ultimo contributo tiene in conto del fatto che per n piccoli il fenomeno di sedimentazione,
con velocità proporzionale a n, deve dominare sul contributo di restituzione, mentre se n è
grande, ci si aspetta un velocità di restituzione costante.
Il modello è dunque

n′ = ℓ− αn+ r
n2

1 + n2
= ℓ+

n

1 + n2
(rn− α(1 + n2))

Non è possibile studiare analiticamente questo sistema, se non nel caso ℓ = 0, cioè in assenza
della sorgente di nutrimento. In tal caso, il termine di destra si può scrivere

n

1 + n2
(−αn2 + rn− α)

il cui numeratore è n per un polinomio di secondo grado. Gli zeri della funzione sono n = 0
e

n =
1

2

(
r

α
±
√( r

α

)2
− 4

)
che sono numeri reali se r ≥ 2α. Si noti inoltre che per n → +∞ la funzione tende a −∞.

n

n'

n1 n2 n3 n

n'

Figura 3.1: Modello per l’eutrofizzazione, con ℓ = 0 e ℓ > 0.

Nel primo grafico in figura 3.1 rappresento la velocità di variazione per ℓ = 0, r = 4.2, α = 2,
considerando anche i valori di n negativi, per chiarire gli aspetti matematici. Questa funzione
ha tre zeri, che chiamo, in ordine crescente, n1, n2, n3. Naturalmente n1 = 0. Per questi tre
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valori, c’è equilibrio tra il flusso con cui n si deposita e quello con cui n torna in circolo dal
fondale. Analizzando il segno di n′ in funzione di n notiamo che n1 e n3 sono equilibri stabili
(e attrattivi), n2 è un equilibrio instabile. Possiamo immaginare che n3 corrisponda a una
situazione di eutrofizzazione, in cui si è accumulato nel fondale e nell’acqua troppo azoto,
mentre n1 a una situazione normale, in cui il nutrimento è assente (e dunque presumibilmente
del tutto assorbito dagli organismi viventi). Nel secondo grafico considero valori di ℓ positivi.
Guardando l’espressione di n′, si comprende che il grafico si ottiene da quello già disegnato
traslandolo verso l’alto esattamente di ℓ.
Si osservi con attenzione cosa accade ai tre equilibri: l’equilibrio n3 si sposta verso destra,
e rimane stabile. Gli equilibrio n1 e n2 si spostano l’uno verso l’altro, e per un particolare
valore di ℓ arrivano a coincidere. Per valori superiori di ℓ svaniscono entrambi.

ln1

n2

n3

ln1

n2

n3

Figura 3.2: Equilibri in funzione di ℓ.

In figura 3.2 rappresento in un grafico come variano gli equilibri al variare di ℓ. In blu ho
disegnato gli equilibri stabili n1 e n3, in rosso n2, quello instabile. Come si vede, c’è un
valore di soglia per ℓ per il quale n1 e n2 si annichilano. Con riferimento al secondo grafico,
immaginiamo di considerare una situazione in cui ℓ è piccolo, per esempio ℓ = 0.1, e il sistema
è nell’equilibrio stabile n1, quindi con poco n disciolto in acqua (assenza di eutrofizzazione).
Facciamo crescere ℓ, il sistema resta nell’equilibrio stabile n1 fino al valore critico di ℓ, passato
il quale l’equilibrio non esiste più! L’unica possibilità per il sistema è quella di raggiungere
“catastroficamente” l’altro equilibrio stabile, n3, per cui però il valore di n è grande e il sistema
è in una situazione di eutrofizzazione. Nel grafico rappresento in ocra queste modifiche. Al
crescere ulteriore di n il valore di n3 aumenta, ma non ci sono cambiamenti qualitativi.
Quello che è accaduto è una “catastrofe”: il sistema era in uno stato di equilibrio, ma i
parametri sono cambiati e l’equilibrio è scomparso, costringendo il sistema a precipitare
in un differente sistema di equilibrio. È da notare che questo cambiamento drammatico
non ha avuto segni premonitori! (Da un punto di vista strettamente matematico qualche
segno premonitore si potrebbe trovare nella crescita incontrollata della velocità di variazione
dell’equilibrio rispetto al parametro, ma non mi aspetto che questa quantità sia misurabile
in una osservazione naturalistica).
Naturalisticamente, il crescere del flusso di nutrimento ha ecceduto la capacità del sistema
di restare in un equilibrio con piccoli valori di n in acqua, e il sistema ha trovato un altro
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equilibrio, con n più grande. Potremmo immaginare di voler tornare all’equilibrio n1 facendo
diminuire ℓ fino al valore di partenza, ma purtroppo non funzionerebbe: se partiamo da un
punto di equilibrio n3, continueremo a rimanere nell’equilibrio n3, senza riuscire a tornare su
n1. Questa irreversibilità del passaggio da un equilibrio all’altro è cruciale in ecologia: una
volta spostato l’equilibrio è molto più difficile tornare indietro, non basta ripristinare i valori
originari dei parametri.
Poiché il sistema dipende da più parametri, si può ipotizzare di poter agire, almeno ma-
tematicamente, su un altro parametro, in questo caso r, che misura con quanta efficacia il
fondale fa rientrare nutrimento nelle acque. Considero dunque ℓ = 0.1, α = 2, e rappresento
in figura 3.3 le soluzioni di equilibrio la variare di r tra 3.2 e 4.3. In questo caso, risulta che
al decrescere di r gli equilibri n2 e n3 si avvicinano e spariscono.
Dunque una strategia per ritornare all’equilibrio n1 potrebbe essere quella di tornare a
ℓ = 0.1, arrivando però sull’equilibrio n3. A questo punto si fa decrescere artificialmente
r (rimuovendo strati di fondale o altro), fino a che non si produce la catastrofe che fa sparire
n3 e costringe il sistema a tornare sull’equilibrio n1 (l’unico che c’è). Possiamo poi tornare
al valore di r originario.

n1

n2

n3

Figura 3.3: Gli equilibri al variare di r.

La situazione descritta nell’esempio può sembrare complessa ma ha aspetto geometrico re-
lativamente semplice e comune a vari fenomeni. Ci sono due parametri che governano gli
equilibri, r e ℓ. Per alcuni valori l’equilibrio è unico e stabile, per altri ci sono due equilibri
stabili e uno instabile (quello intermedio tra i due).
Nel grafico in figura 3.4 il piano di base è il piano (r, ℓ), l’asse verticale è il valore di n di
equilibrio. Come si vede, la superficie disegnata dagli equilibri al variare dei due parametri
presenta una “piega”: fuori dalla piega c’è un unico equilibrio, stabile. Nel piano (r, ℓ) questa
situazione corrisponde alla regione fuori dalle due curve nere. Invece, quanto (r, ℓ) è un punto
nella regione tra le due curve nere, ci sono tre posizioni di equilibrio, di cui quella intermedia
è instabile.
Le frecce disegnano in questo grafico le situazioni che abbiano descritto precedentemente.
Aumentare ℓ fa sparire l’equilibrio inferiore, e fa precipitare il sistema nell’equilibrio superio-
re, che è uno stato stabile di eutrofizzazione. Tornare indietro con il valore di ℓ non ci riporta
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Figura 3.4: La “catastrofe a piega”.

allo stato precedente, bisogna prima passare per una catastrofe inversa, in cui sparisce l’e-
quilibrio superiore. Nell’esempio ci riusciamo operando su r. Ci si riesca anche operando
sul solo parametro ℓ, ma bisogna considerare valori negativi di ℓ, cioè immaginare di poter
filtrare l’acqua per liberarla del nutrimento in eccesso (ma questa situazione non sarebbe
modellizzabile con un valore costante, come abbiamo fatto).

3.2 Lo shift di ecosistemi
C’è un altro modo di rappresentare la catastrofe a piega, che viene molto usato anche in studi
ecologici. La base di questa descrizione viene dalla fisica, in particolare dalla meccanica.
Ricordo in particolare che nei sistemi fisici gioca un ruolo essenziale l’energia potenziale.
Supponiamo di considerare un caso unidimensionale e di avere a che fare con una particella
che nel punto x ha energia potenziale V (x). La meccanica ci dice che in x la particella sente
una forza f(x) = −V ′(x). Consideriamo l’energia potenziale in figura. La forza è nulla
dove V ′ è nullo, cioè nei punti di massimo, di minimo, e di flesso a tangente orizzontale di
V (x). Per chiarire il moto conviene pensare a una pallina che si muove lungo il grafico di
V , soggetta alla gravità. In effetti se mettiamo la pallina ferma in A, B, C, rimane ferma,
poiché la forza è 0. D’altra parte se la mettiamo vicino a uno di questi punti si osservano due
situazioni differenti: se la mettiamo vicino a A o B, la pallina si allontana; se la mettiamo
vicino a C la pallina oscilla intorno a C. Questo vuol dire che A e B sono posizioni di
equilibrio instabili, mentre C è una posizione stabile.
Dunque i sistemi meccanici hanno questa proprietà: i punti di minimo relativo dell’energia
potenziale sono punti di equilibrio stabile, i punti a tangente orizzontale che non sono di
minimo sono punti instabili.

Per analogia, spesso si immagina che in sistema naturale (per esempio un ecosistema) sia in
un equilibrio descritto da un punto di minimo di un’opportuna energia potenziale. Al variare
dei parametri l’energia potenziale può cambiare e può cambiare la natura degli equilibri.
Considero come esempio l’energia potenziale rappresentata nella figura 3.5, che si modifica
al modificarsi di qualche parametro. Partendo dal grafico a destra in alto: inizialmente c’è
un solo punto di equilibrio x = x1, che è stabile. Al modificarsi del potenziale l’equilibrio si
sposta di poco, in x2, ma rimane unico e stabile. Nel terzo grafico, l’equilibrio stabile è in
x3 (vicino ai precedenti), ma compare un equilibrio instabile, nel punto di flesso a tangente
orizzontale. Nel grafico successivo il punto instabile biforca in un punto instabile (il punto di
massimo relativo) e in uno stabile, il punto di minimo relativo a destra. In questo momento
dunque il sistema ha due equilibri stabili, ma rimane in quello in cui era, e lo stesso accade
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Figura 3.5: Energia potenziale che si modifica provocando uno shift catastrofico
dell’equilibrio.

in primo grafico in basso a sinistra. Nel grafico successivo la posizione di equilibrio in cui
si trova il sistema va a coincidere con l’equilibrio instabile, in un punto di flesso a tangente
orizzontale, con ascissa x6. In questo istante il sistema non è più in equilibrio, e può solo
precipitare nell’unico equilibrio stabile a destra, che nei due grafici successivi si sposta in x7

e x8. Si noti che mentre i punti da 1 a 6 sono vicini tra loro, e i punti da 7 a 8 sono vicini tra
loro, il primo gruppo è distante dal secondo: il sistema di trova ora in un’altra situazione.

Nella figura 3.6 rappresento lo stesso sistema, ma utilizzando il grafico di biforcazione. In
ascissa c’è il parametro che viene cambiato, in ordinata le posizioni di equilibrio.
In letteratura trovate facilmente grafici tipo quello in figura 3.5, per esempio nel lavoro di
rassegna M. Sheffer, S. Carpenter, J.A. Foley, C. Folke, B. Walker: Catastrophic shifts in
ecosystems Nature, vol 413, 11 (2001). Un tipico esempio è la transizione di un ecosistema da
boscoso a erbaceo, in cui, per il cambiare delle temperature medie e dell’umidità, l’equilibrio
dello stato “boscoso” diventa instabile e sparisce, e il sistema raggiunge un altro stato stabile,
quello “erbaceo”. Un punto di estrema importanza è che anche se i parametri (temperatura
e umidità) tornano ai livelli precedenti, il sistema rimane nell’equilibrio “erbaceo” fino a che
esiste, o fino a che altri fattori esterni (per esempio un rimboschimento artificiale) non lo
cambiano.

Termino questo paragrafo con un esercizio, che serve a far vedere che i sistemi possono
cambiare in modi differenti da quelli fin qui discussi.
Mi sono liberamente ispirato al modello studiato nell’articolo “Bautin bifurcations in a forest-

49



x1
x2

x3

x4

x5

x6

x7
x8

Figura 3.6: Grafico di biforcazione completo per lo shift catastrofico

grassland ecosystem with human-environment interactions” Scientific Reports (2019) 9:2665
https://doi.org/10.1038/s41598-019-39296-x semplificandolo.
Si vuole descrivere l’interazione tra una comunità umana e l’estensione di foreste e praterie
nella regione di insediamento.
La prima variabile che introduciamo è f ∈ [0, 1], che è frazione di terreno coperto da foreste.
Il valore 1− f è la frazione di terreno coperta da praterie. In assenza di intervento umano,
la foresta si riduce, a favore delle praterie, con tasso costante ν. Incendi periodici bruciano
le praterie, ma meno gli alberi, sopratutto dove sono più densi e dunque è meno presente il
sottobosco. Questo effetto si traduce in un termine di crescita del tipo

af(1− f)w(f)

La parte af(1− f) è un termine di crescita limitata (tipo Verulsth) e non a tasso costante,
perché f è una variabile limitata da 1. La funzione w(f) modula il termine di crescita in base
alla densità della foresta, e dunque è una funzione crescente. Nell’articolo viene suggerita
un’espressione che qui non discuto, per i miei scopi assumo

w(f) = f b

L’equazione per f è dunque
f ′ = −νf + af(1− f)f b

L’interazione proposta con la comunità umana è di tipo “dinamica delle opinioni”, che riscuote
un grande interesse nella modellistica sociale. Indichiamo con x la frazione degli umani
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“favorevoli” alla foresta. Ci si aspetta che x cresca se f scende sotto una certa soglia, e che x
decresca se f è sopra una certa soglia. Un’espressione semplice con queste caratteristiche è

x(1− x)(1− 2f)

La parte x(1 − x) è di nuovo un termine di crescita limitata (x deve essere tra 0 e 1), il
termine 1− 2f è positivo se f < 1/2, negativo se f > 1/2.
L’effetto di x su f viene modellizzato con il termine

hfx

che è un contributo di crescita per f con tasso proporzionale alla grandezza di x.

Esercizio 17.

a Scrivi il sistema complessivo

b Poni ν = 0.3, a = 0.5, b = 0.8, e considera h = 0 (cioè non c’è azione umana sulla foresta).
Simula il sistema e descrivine il comportamento.

c Ora poni h = 0.8. Simula il sistema e descrivine il comportamento.

d Porta il valore di b a 1.2 Simula il sistema e descrivine il comportamento.

e Esplora altri valori dei parametri, e scrivi una relazione conclusiva sul comportamento del modello.

3.3 Modelli differenziali discreti
Vedi [BDM par. 6.4], e in particolare gli esempi 6.4.7, 6.4.8.

3.4 Il modello di May e la transizione al caos
Vedi [BDM par. 6.4] esempio 6.4.9
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Capitolo 4

Richiami di probabilità e statistica

Pensavo di dare per per scontate le nozioni base, che comunque possono essere trovate su
[BDM cap. 9, 10, 11]. Qui faccio una sintesi.

4.1 Mediana, quantili, frequenze cumulate

Vedi [BDM cap 9], o un qualunque testo di statistica elementare, o anche direttamente le
esercitazioni con R.

4.2 Proprietà estremali della media

(vedi BDM par. 9.2)
È noto che l’informazione contenuta in una collezione di dati viene spesso sintetizzata con il
valore medio, e che la dispersione dei dati viene misurata mediante la deviazione standard.
Approfondiamo questi concetti.
Supponiamo di avere una variabile statistica X, che assume i valori dati numerici, X1, . . . XN .
L’idea di fondo è rappresentare la variabile con un solo numero x, con l’espressione

Xi = x+∆Xi

dove ∆Xi = Xi − x è chiamato, a seconda dei contesti, scarto o errore. Il numero x che
sintetizza i valori della variabile X, deve in un qualche senso essere il più vicino possibile a
tutti i dati. Una interessante scelta per la funzione di vicinanza v(x) è data dalla somma
dei quadrati delle distanze dei punti da x. Poiché il numero dei dati è fissato, per comodità
dividiamo questa somma per N , e in questo modo consideriamo la media delle quadrati delle
distanze dei dati da x:

v(x) =
1

N

N∑
i=1

(Xi − x)2

Svolgendo i quadrati si ottiene

v(x) =
1

N

N∑
i=1

X2
i − 2

1

N

N∑
i=1

xXi +
1

N

N∑
i=1

x2.
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La seconda somma è pari a xX, dove X è la proprio la media aritmetica, l’ultima somma è
pari a x2. Dunque, cambiando l’ordine della somma,

v(x) = x2 − 2xX +
1

N

∑
i=1

X2
i

che è una funzione quadratica, con la concavità rivolta verso l’alto. Il valore di x che
minimizza v(x) è dunque l’ascissa del vertice, che risulta essere proprio X̄.
Usando la definizione, possiamo notare che v(X) è proprio la media del quadrato degli scarti
da X, cioè, per definizione è la varianza

σ2
X =

1

N

N∑
i=1

(
Xi −X

)2
= (X −X)2.

Questo valore deve coincidere con l’ordinata del vertice della parabola che è

v(X) = X
2 − 2X

2
+X2 = X2 −X

2
.

Riassumendo: la media aritmetica dei dati è il valore che minimizza la media dei quadrati
delle distanze, che in tal caso è pari alla varianza. Inoltre abbiamo mostrato che

σ2
X = (X −X)2 = X2 −X

2
.

cioè che la varianza è uguale alla differenza tra la media dei quadrati dei dati e il quadrato
della media dei dati.

Ultima osservazione: quando si eleva al quadrato una somma, si ottengono tre termini: i
quadrati dei due termini e i doppi prodotti. È una proprietà della media che da

Xi = X +∆Xi

quadrando e sommando, i doppi prodotti se ne vanno, cioè

X2 = X
2
+ σ2

X .

Questa formula è un primo esempio di decomposizione della variabilità (quadratica): la
variabilità di X rispetto a 0 si decompone in un termine dovuto alla distanza della media da
0, il termine X

2, e in un termine di variabilità di X rispetto alla media, il termine σ2
X .

Un altro modo di vedere questo argomento, forse più sintetico, è il seguente. Torno alla
funzione che misura la distanza quadratica di x dai dati:

v(x) =
1

N

N∑
i=1

(Xi − x)2

che è lo scarto quadratico medio rispetto a x. Sommo e sottraggo la media dentro, e svolgo
i quadrati

v(x) =
1

N

N∑
i=1

((Xi −X) + (X − x))2 = σ2
X + 2(X − x)X −X + (X − x)2 = σ2

X + (X − x)2.

Come si può notare, il doppio prodotto scompare. Da questa espressione si capisce che v(x)
ha il valore minimo in X, e in tal caso vale σ2

X , e che la media ha una proprietà importante:
la scarto quadratico medio rispetto a un valore x si decompone in due termini positivi: uno
che è la distanza al quadrato tra x e il valore medio, e l’altro che è la varianza, cioè lo scarto
quadratico medio rispetto alla media.
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4.3 Coppie di variabili statistiche
Per le nozioni introduttive su correlazione e covarianza si veda [BDM cap 9]. Qui presento
una versione alternativa della determinazione della retta dei minimi quadrati.
Supponiamo di aver preso N dati per due variabili statistiche, X e Y . Osservando il grafico di
dispersione notiamo un buona correlazione, e in effetti il valore del coefficiente di correlazione

ρ =
σxy

σxσy

è in modulo vicino a 1. In tal caso, possiamo pensare che esista una legge lineare y = ax+ b,
che “spiega” y in funzione di x. I dati però non sono perfettamente allineati (|ρ| < 1), dunque
vale, al variare di i,

Yi = aXi + b+ εi (4.3.1)

dove εi prende il nome di errore o anche “residuo” (nel senso che il valore di Y “dovrebbe”
essere quello teorico, aXi + b, ma c’è una differenza residua rispetto alla “spiegazione”).
Il primo problema che ci poniamo è quello di determinare la migliore retta possibile che sia
vicina ai dati, cioè dobbiamo trovare a e b. Anche in questo caso è essenziale fissare prima in
che senso la retta deve essere migliore. Nell’ottica in cui abbiamo scritto il modello lineare
(4.3.1), cerchiamo di minimizzare la somma dei quadrati dei residui: 1

N

∑
ε2i . Come abbiamo

già visto nel caso della media, se riusciamo nella nostra operazione di minimizzazione, la
media degli errori deve essere 0. Imponendo questo fatto e calcolando la media di entrambi
i membri dell’equazione (4.3.1) si ottiene

Y = aX + b

Dunque la retta migliore (che è la retta di regressione o retta dei minimi quadrati
passa necessariamente per il baricentro dei dati, cioè per il punto del piano (x, y) che ha
come coordinate (X,Y ).
Ovviamente questa informazione non basta a trovare la retta: i parametri sono due, e per ora
abbiamo ottenuto una sola informazione. Usando questa informazione scriviamo gli scarti di
Y :

∆Yi = Yi − Y = aXi + b− (aX + b) + εi = a∆Xi + εi

Dunque
1

N

∑
ε2i =

1

N

∑
(∆Yi − a∆Xi)

2

che svolgendo il quadrato e sviluppando le somme, è

1

N

∑
ε2i = σ2

Y − 2aσXY + a2σ2
X

Quindi la media dei quadrati dei residui è una funzione quadratica del coefficiente a, che ha
come grafico una parabola. Il minimo si ottiene se a è l’ascissa del vertice, cioè

a =
σXY

σ2
X

che si può anche scrivere in termini del coefficiente di correlazione:

a =
σXY

σ2
X

= ρ
σX

σY

.
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Questa uguaglianza ci dice quanto vale a, usando il fatto che la retta passa per il baricentro
si determina anche b, risolvendo il problema di partenza.
Usando il valore di a appena trovato, intanto notiamo che

a2σ2
X = ρ2σ2

Y .

Inoltre possiamo calcolare quanto vale al minino la media del quadrato dei residui, che,
poiché i residui hanno media nulla, è la varianza dei residui:

σ2
ε = σ2

Y − 2ρ2σ2
Y + ρ2σ2

Y = σ2
Y − ρ2σ2

Y

Quindi, anche in questo caso, dalla ottimizzazione del parametro a nel modello

∆Yi = a∆Xi + εi

si ottiene
σ2
Y = a2σ2

X + σ2
ε = ρ2σ2

Y + σ2
ε

Detto in parole: la varianza della variabile Y è la somma di un contributo dovuto alla
varianza della variabile X, più un contributo di variabilità dovuto alla varianza dei residui.
Dividendo per σ2

Y si ottiene
1 = ρ2 + σ2

ε/σ
2
Y

che leggiamo in questo modo: ρ2 è la frazione della variabilità di Y spiegata dal modello
lineare, mentre σ2

ε/σ
2
Y = 1− ρ2 è la frazione residua. Un modello lineare sarà tanto migliore

quanto più ρ2 si avvicinerà a 1. Il numero ρ2 è anche detto coefficiente di determinazione.

Una ultima osservazione: data la variabile X, la variabile

X −X

σX

è una variabile adimensionale, a media nulla e con deviazione standard 1. È la standar-
dizzazione della variabile X. La retta di regressione ha una forma semplice in termini di
variabili standardizzate, infatti

Y − Y

σY

= ρ
σY

σX

1

σY

(X −X) = ρ
X −X

σX

cioè il coefficiente angolare della retta tra gli scarti standardizzati è proprio il coefficiente
di correlazione. Se i dati sono perfettamente allineati con correlazione positiva, gli scarti
standardizzati sono perfettamente uguali, cioè ρ = 1. In caso di perfetto allineamento con
correlazione negativa, gli scarti sono opposti in segno, ma uguali in modulo.

4.4 Probabilità ed eventi
Fenomeni che sono governati da troppe cause, o da cause sconosciute, assumono un aspetto
“casuale” (o aleatorio) nel loro verificarsi. Esempi semplici e classici sono il lancio di un
dado o di una moneta.
La modellizzazione matematica di un evento casuale discreto (ovvero di un evento che può
verificarsi in un numero finito di varianti), viene fatta in quattro passi:
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1) Identificare l’insieme ( o spazio) degli eventi elementari

E = {e1, e2, . . . , en},

cioè l’insieme delle n varianti con cui l’evento può verificarsi. Nel caso della moneta E =
{T,C}, nel caso del dado E = {1, 2, 3, 4, 5, 6}

2) Assegnare un valore di probabilità ad ogni evento elementare. Indicherò con pi il valore
assegnato all’evento ei. Si assume 0 ≤ pi ≤ 1; il valore 0 è assegnato agli eventi impossibili,
il valore 1 all’evento certo, ovvero che si verifica sicuramente. Inoltre la somma delle
probabilità è 1:

n∑
i=1

pi = 1.

Nel modello per la moneta non truccata si considerano equiprobabili gli eventi “T” e “C”,
dunque si assegna ad essi la probabilità 1

2
. Per una moneta truccata questi numeri saranno

diversi: indicando con pT la probabilità che esca testa, la probabilità che esca croce sarà
pC = 1− pT . Il caso estremo (una moneta con la “testa” su entrambe le facce) è descritto da
pT = 1 e pC = 0.

3) Identificare gli eventi che si vogliono descrivere. Chiamerò evento ogni sottoinsieme
dello spazio degli eventi elementari

A ⊂ E.

Il motivo di questa definizione si chiarisce meglio con un esempio: nel lancio di un dado
potrebbe interessarci il fatto che esca un numero pari; questo “evento composto” racchiude
gli eventi elementari 2, 4, 6, quindi lo identifichiamo con il sottoinsieme {2, 4, 6} dello spazio
degli eventi.

4) Usare la regola di calcolo per le probabilità degli eventi composti: se A ⊂ E, la probabilità
che si verifichi A, indicata con P (A), è la somma delle probabilità degli eventi elementari che
costituiscono A. Nell’esempio precedente, la probabilità che esca un numero pari è p2+p4+p6.

La regola per il calcolo della probabilità di un evento composto è in caso particolare della
seguente regola più generale:

A e B sono eventi incompatibili se non possono verificarsi contemporaneamente; in tal caso
la probabilità dell’evento “A o B” è la somma delle probabilità di A e B

Espressa in termini matematici:

se A ∩B = ∅, allora P (A ∪B) = P (A) + P (B),

Infatti gli eventi sono incompatibili se non c’è nessun evento elementare che appartenga
ad entrambi (e dunque l’intersezione degli eventi è l’insieme vuoto), mentre l’evento “A o
B” è costituito dall’insieme degli eventi elementari per cui si realizza A oppure B, quindi
dall’unione insiemistica di A e B.

Esercizio di riepilogo. Un dado tetraedrico irregolare ha le facce numerate da 1 a 4. Si
supponga che p1 = 1

3
, p2 = 1

4
, p3 = 1

6
. Determinare p4. Descrivere insiemisticamente gli

eventi seguenti, e calcolarne la probabilità

57



• A1 esce un numero dispari

• A2 non esce un numero dispari

• A3 non esce 3

• A4 esce 2 o un numero dispari

Dire quali sono le coppie di eventi incompatibili.

La “legge dei grandi numeri” dà una motivazione alla costruzione precedente, e lega la
probabilità alla statistica.
Supponiamo di avere una moneta non truccata, e facciamo N lanci. Possiamo trattare i dati
che abbiamo ottenuto con metodi statistici definendo

FN(T ) = frequenza assoluta dell’uscita di T in N lanci.

e
fN(T ) = FN(T )/N = frequenza relativa dell’uscita di T in N lanci.

Se il nostro modello probabilistico è quello giusto per descrivere il fenomeno, ci aspettiamo
che al crescere del numero delle prove la frequenza relativa si avvicini al valore assegnato
della probabilità.
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Figura 4.1: Frequenze relative di T al variare del numero di prove

Più in generale, in un modello assegneremo all’evento ei la probabilità P (ei) = pi se ci
aspettiamo che pi sarà il valore asintotico della frequenza relativa dell’evento ei. In genere la
scelta delle pi viene fatta in base a semplici considerazioni, in cui gioca un ruolo fondamentale
la presunzione di equiprobabilità: se non abbiamo motivo di pensare che un evento sia
favorito rispetto a un altro, gli assegneremo la stessa probabilità. Questo è il caso delle
monete, dei dadi, dei giochi di carte. A partire da semplici esempi però si possono costruire
modelli molto utili e interessanti.
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4.5 Eventi indipendenti
Consideriamo il lancio consecutivo di due monete non truccate. Evidentemente, l’esito del
lancio della seconda moneta non dipende dall’esisto del lancio della prima, e viceversa. In
particolare l’evento “la prima moneta dà T” è indipendente dall’evento “la seconda moneta
dà T”. In termini di probabilità, A e B si definiscono indipendenti se

P (A ∩B) = P (A)P (B).

La ragionevolezza di questa definizione si comprende pensando alle frequenze relative nel
caso di molti lanci delle due monete. Supponiamo di fare 1000 lanci. In circa 500 casi la
prima moneta dà T; di questi casi, in circa la metà (250) anche la seconda moneta dà T.
Dunque la frequenza relativa dell’uscita TT sarà circa un quarto.

Un caso particolare di eventi indipendenti è quello in cui si ripete lo stesso esperimento
probabilistico, per esempio il lancio successivo di una moneta, per la quale la probabilità che
esca testa è p.
Supponiamo di effettuare 10 lanci. Lo spazio degli eventi è E10 = E × E × E × E × E ×
E ×E ×E ×E ×E. Per semplicità indicherò gli eventi con sequenze ordinate di T e C. Ad
esempio TTCTCCTCCC invece di (T, T, C, T, C, C, T, C,C,C). Resta inteso che il primo
simbolo si riferisce al primo lancio, il secondo al secondo, etc. .

Esercizio. Quanti sono gli eventi elementari in E10? [Risposta: 210 = 1024]

Esercizio. Qual è la probabilità dell’evento TTCTCCTCCC? [Risposta: p4(1− p)6]
E dell’evento TTTTCCCCCC? [Risposta: la stessa]
E dell’evento CCCCCCTTTT? [Risposta: la stessa]

Esercizio. Sia N il numero di lanci che viene effettuato; data una stringa (sequenza) qua-
lunque, come determino facilmente la sua probabilità? [Risposta: se k è il numero di T, la
probabilità è pk(1− p)(N−k).

Come si vede dagli esempi precedenti, la probabilità di una sequenza dipende solo dal numero
di T che contiene, e non dal loro ordine. La domanda a cui vogliamo rispondere è:
su n lanci, qual è la probabilità che esca k volte T?

Esempio. Con quale probabilità ho due T con due lanci? E una T? E nessuna T?
L’evento “due T” è esattamente l’evento TT, che ha probabilità p2. L’evento “nessuna T” è
esattamente l’evento CC, che ha probabilità (1−p)2. L’evento “una T” è un evento composto:
{TC,CT}. Essendo TC e CT eventi elementari (quindi incompatibili), la probabilità cercata
è la somma delle singole probabilità. Esse sono entrambe uguali a p(1− p) (infatti il numero
di T è lo stesso). Dunque la probabilità di “una testa” è 2p(1− p).

In generale, l’evento “su n lanci esce k volte T” è un evento composto: è l’insieme di tutte
le stringhe che contengono esattamente k volte testa; ogni singola stringa con k volte T ha
probabilità pk(1− p)n−k.
Dunque per determinarne la probabilità è sufficiente contare il numero di stringhe che hanno
esattamente k volte T. La risposta a questa domanda è data dal coefficiente binomiale:(

N

k

)
=

N !

k! (N − k)!
,
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dove con il punto esclamativo si intende il fattoriale del numero, cioè il prodotto di tutti
gli interi da 1 al numero:

a! = 1× 2× · · · × a.

In generale, si chiama distribuzione binomiale la legge di probabilità che descrive il nu-
mero di “successi” su N prove indipendenti, assumendo che la probabilità di successo in una
singola prova sia p:

P (k) =

(
N

k

)
pk(1− p)N−k

4.6 Probabilità condizionate, formula di Bayes, test dia-
gnostici

Vedi [BDM] cap. 10.

4.7 Variabili aleatorie

Si chiama variabile aleatoria una qualunque funzione degli eventi elementari. Questa
definizione astratta si concettizza spesso nel caso in cui associamo numeri ad eventi. Per
esempio, il numero di successi su N prove indipendenti di un esperimento è una variabile
aleatoria binomiale.
La scelta di un numero intero a caso tra 1, 2, . . . N è invece una variabile aleatoria unifor-
me in {1, . . . N}. Concettualmente non c’è differenza tra trattare eventi che si chiamano A,
B, o e, oppure eventi a cui è associato un valore numerico, però il caso di variabili aleatorie
numeriche permette di definire delle quantità molto utili, i valori attesi.
Li introduco con un esempio. Si supponga di partecipare a un test a risposta multipla. Ogni
domanda ha 5 possibili risposte, di cui una sola esatta a cui è assegnato punteggio 1. Alla
risposta non data è assegnato il punteggio 0. Per scoraggiare risposte casuali, in genere viene
assegnato un punteggio negativo alle risposte errate. Supponiamo che sia −0.25. Chiediamoci
cosa accade a uno studente che risponde sempre a caso, su un test fatto di N domande. Il
suo punteggio medio per domanda sarà

+1× k − 0.25× (N − k)

N

dove k è il numero di risposte esatte che ha dato. Poiché la probabilità di date una risposta
esatta scegliendo a caso è 1/5, invocando la legge dei grandi numeri, ci aspettiamo che il
rapporto k/N sia vicino a 1/5. Analogamente, il rapporto (N − k)/M sarà vicino a 4/5, che
è la probabilità di dare una risposta errata. Dunque il punteggio medio per domanda sarà
vicino al valore

+1× 1

5
− 0.25× 4

5
= 0

“In media”, lo studente che risponde a caso riceve 0 punti per esercizio (questo è il motivo
della scelta di -0.25 per il punteggio delle risposte errate).
Per predire il punteggio medio su un gran numero di prove, abbiamo sommato i possibili valori
della variabile (in questo caso +1 e −0.25, pesati con la loro probabilità). Generalizziamo.
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Sia X una variabile aleatoria, che può assumere i valori reali x1, . . . xn, con probabilità
p1, . . . pn. Si chiama valore atteso il numero

⟨X⟩ =
n∑

i=1

xipi

(nell’esempio precedente, n = 2). Supponiamo ora di estrarre N volte questa variabile,
ottenendo i valori X1, . . . XN (nell’esempio precedente, questi valori sono i punteggi che lo
studente ottiene nelle singole domande). Si chiama media empirica il valore

mN =
1

N

N∑
h=1

Xh

Riorganizziamo i termini della somma, indicando con FN(j) la frequenza assoluta con cui
esce xj e con fN(j) la frequenza relativa

mN =
1

N

n∑
i=1

xiFi(N) =
n∑

i=1

xifi(N)

Se N è grande, ci si aspetta che fi(N) ≃ pi, dunque

mN ≃ ⟨X⟩

cioè il valore atteso è predittivo del valore della media empirica, per N grande.

Spesso è utile considerare funzioni di variabili aleatorie. In generale, se f è una funzione e
X è una variabile aleatoria, f(X) è una variabile aleatoria, e il suo valore atteso è

⟨f(X)⟩ =
n∑

i=1

f(xi)pi

In particolare, si chiama varianza il valore atteso dello scarto quadratico

σ2 = ⟨(X − ⟨X⟩)2⟩

Come vedremo successivamente, questo valore è anche uguale alla differenza tra il valore
atteso del quadrato della variabile e il quadrato del valore atteso:

σ2 = ⟨(X − ⟨X⟩)2⟩ = ⟨X2⟩ − ⟨X⟩2

Come esercizio calcoliamo la varianza del voto dello studente che risponde a caso:

σ2 = (1− 0)2 × 1

5
+ (−0.25− 0)2 × 4

5
=

1

5
+

1

42
× 4

5
=

1

4

Calcoliamo anche valore atteso e varianza di una variabile aleatoria X che vale 1 con
probabilità p, e 0 con probabilità 1− p:

⟨X⟩ = 1× p+ 0× (1− p) = p

σ2 =< (X − p)2 >= (1− p)2 × p+ (0− p)2 × (1− p) = p(1− p)

Sui valori attesi di somma e prodotto valgono i due seguenti importanti fatti:
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• il valore atteso della somma di variabili aleatorie è uguale alla somma dei valori attesi
delle variabili;

• la varianza della somma di variabili aleatorie indipendenti è uguale alla somma delle
varianze delle variabili.

La prima asserzione sembra molto naturale, pensando a qualche esempio. Nel caso di rispo-
ste casuali a due domande, il valore atteso del voto per la prima domanda è zero, quello per
la seconda è zero, il voto atteso complessivo sarà naturalmente 0+0 = 0. In questo esempio,
però, le due variabili, voto alla prima domanda, e voto alla seconda domanda, sono indipen-
denti. Immaginiamo che lo studente scelga a caso quale risposta dare alla prima domanda,
e alla seconda risponda esattamente nello stesso modo. In questo caso le due variabili non
sono indipendenti, ma il valore atteso è sempre 0. Lo stesso accede se lo studente sceglie
a caso la seconda risposta tra quelle diverse dalla risposta che ha dato alla prima doman-
da. Per esercizio, si calcoli la varianza del voto totale nei tre casi descritti: scelta casuale
indipendente, scelta casale identica, scelta casuale differente. Quale sarà la maggiore?
Dimostro che la prima asserzione è vera, anche se le variabili non sono indipendenti. Consi-
dero due variabili, X che assume valori xi, i = 1, . . . k, e Y che assume valori yj, j = 1 . . . h.
Conoscere la distribuzione di probabilità per X e per Y è una descrizione parziale, perché
non prendiamo in considerazione come si accoppiano i valori delle due variabili. Invece è
necessario specificare

P (X = xi e Y = yj)

che è detta distribuzione congiunta delle due variabili. Se le variabili sono indipendenti,
allora

P (X = xi e Y = yj) = P (X = xi)P (Y = yj)

Nel caso generale P (X = xi e Y = yj) = pij saranno degli opportuni valori, a somma 1.
Sommando su tutti i possibili valori che può assumere la variabile Y , si ottiene la distribuzione
della variabile X e viceversa:

P (X = xi) =
h∑

j=1

P (X = xi e Y = yj) =
h∑

j=1

pij

P (Y = yj) =
k∑

i=1

P (X = xi e Y = yj) =
k∑

i=1

pij

A questo punto è facile calcolare

⟨X + Y ⟩ =
k∑

i=1

h∑
j=1

(xi + yj)pij =
k∑

i=1

h∑
j=1

xipij +
k∑

i=1

h∑
j=1

yipij

=
k∑

i=1

xi

h∑
j=1

pij +
h∑

j=1

yj

k∑
i=1

pij

=
k∑

i=1

xiP (X = xi)
h∑

j=1

yjP (Y = yj) = ⟨X⟩+ ⟨Y ⟩

Vediamo invece perché è vera la seconda asserzione, nel caso in cui

P (X = xi e Y = yj) = P (X = xi)P (Y = yj)

62



⟨XY ⟩ =
k∑

i=1

h∑
j=1

xiyjP (X = xi)P (Y = yj)

=
k∑

i=1

xiP (X = xi)
h∑

j=1

yjP (Y = yj) = ⟨X⟩⟨Y ⟩

Come conseguenza, si ha che la varianza della somma di due variabili aleatorie indipendenti
è uguale alla somma delle varianze. Infatti lo scarto quadratico della somma è

(X + Y − ⟨X + Y ⟩)2 = (X − ⟨X⟩+ Y − ⟨Y ⟩)2

= (X − ⟨X⟩)2 + 2(X − ⟨X⟩)(Y − ⟨Y ⟩) + (Y − ⟨Y ⟩)2

Il valore atteso di X − ⟨X⟩ e di Y − ⟨Y ⟩ è zero, dunque, usando l’indipendenza, si ottiene
che il valore atteso del termine al centro è 0. I valori attesi degli altri due sono esattamente
le varianza di X e Y . In sintesi, per due variabili indipendenti:

σ2
X+Y = σ2

X + σ2
Y

Ora siano in grado di calcolare senza (troppi) sforzi, il valore atteso e la varianza di una
variabile aleatoria relativa a N lanci con probabilità di successo p per ogni lancio. Infatti la
variabile aleatoria FN = numero di successi su N esperimenti si ottiene contando il numero
di successi, cioè

FN = X1 + · · ·+XN

dove Xi vale 1 se all’i-esimo esperimento si ottiene il successo, e 0 altrimenti (chiamo FN

questa variabile, perché è la frequenza di successi negli N esperimenti). Le variabili aleatorie
Xi sono indipendenti, hanno media p e varianza p(1 − p), come abbiamo calcolato negli
esercizi precedenti. Usando che il valore atteso della somma è pari alla soma dei valori attesi
si ottiene

⟨FN⟩ = Np

(come c’era da aspettarsi, pensando alle frequenze). Usando l’indipendenza, anche la varian-
za è la somma delle varianze, e dunque

σ2 = Np(1− p)

4.8 Medie empiriche e valori attesi
Torniamo ancora sull’esempio della variabile binomiale FN , numero di successi in N prove, e
chiediamoci che cosa accade al crescere di N . Il suo valore atteso è pN , la sua varianza Np(1−
p). Ricordando che la deviazione standard esprime l’ordine di grandezza dello scostamento
dal valore atteso, possiamo dire che

FN = pN + errore, con l’errore dell’ordine di
√
N

Quindi l’ordine di grandezza dell’errore cresce al crescere di N . Torniamo all’esempio della
moneta non truccata. Su 100 lanci mi aspetto circa 50 teste, con un errore dell’ordine di√

100/4 ≈ 5. Su 10 000 lanci, l’errore è dell’ordine di 50. Su un milione di lanci l’errore è
dell’ordine di 500.
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Figura 4.2: Distribuzione di probabilità dell’errore FN − pN

Vediamo graficamente questo fatto, nel caso p = 0.4, rappresentando la distribuzione della
variabile FN − pN , per alcuni valori di N . Come si nota, al crescere di N la distribuzione si
allarga e si abbassa, rendendo probabile che l’errore sia un numero grande.

Chiediamoci invece cosa accade alla media empirica del numero di successi, cioè a fN =
FN/N . Il valore atteso di questa variabile è p, la varianza è Np(1 − p)/N2 = p(1 − p)/N .
Dunque

fN = p+ errore, con l’errore dell’ordine di
1√
N

Stavolta, al crescere di N , la taglia dell’errore diminuisce.
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Figura 4.3: Distribuzione di probabilità dell’errore fN − p

In questo secondo grafico non ho rappresentato le probabilità ma le densità, quindi le
probabilità sono rappresentate dalle aree.
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Stiamo descrivendo con maggior dettaglio la legge dei grandi numeri: per N grande, il valore
della frequenza relativa dista dalla probabilità per un errore di taglia 1/

√
N , che dunque va

a 0 per N che tende a +∞. Graficamente, al crescere di N la densità di probabilità diventa
sempre più alta e più stretta, al contrario del caso precedente, in cui diventava più bassa e
più larga.

Ricapitolando

FN − pN =
N∑
i=1

(Xi − p) è dell’ordine di
√
N

fN − p =
1

N

N∑
i=1

(Xi − p) è dell’ordine di
1√
N

Osservando queste due relazioni, si comprende che se invece di dividere la somma per per
N si divide per

√
N allora la varianza dell’errore è di ordine 1, non va nè a ∞ nè a 0.

Osserviamo graficamente cosa accade alla variabile aleatoria

1√
N

N∑
i=1

(Xi − p)
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Figura 4.4: Distribuzione di probabilità di
∑

i(Xi − p)/
√
N

La forma della curva si stabilizza rapidamente. Prima di descrivere esattamente cosa accade,
richiamo due definizioni.

Una variabile aleatoria normale standard è una variabile aleatoria Z che può assumere
tutti i valori reali, e ha densità di probabilità

1√
2π

e−x2/2

Il suo valore atteso è 0, la sua deviazione standard è 1 (graficamente, ±1 sono le ascisse dei
punti di flesso).
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Consideriamo ora la variabile aleatoria σZ+µ, con σ > 0 e µ qualunque parametri fissati. Il
suo valore atteso è µ, perché Z ha valore atteso nullo. La sua varianza è uguale alla varianza
di σZ, perché gli scarti non dipendono da µ, e questa variabile ha varianza σ2. La variabile
σZ + µ è detta normale o gaussiana, di media µ e deviazione standard σ, e ha densità di
probabilità

1√
2πσ

e−(x−µ)2/(2σ2)

In questo caso, x = µ è asse di simmetria per il grafico, e µ è l’ascissa del massimo, mentre
µ±σ sono le ascisse dei punti di flesso. Il grafico si ottiene da quello nella normale standard
dilatando di σ le x, dividendo per σ le y, e traslando il grafico a destra di µ. In figura mostro
mostro il caso di µ = 0.
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Figura 4.5:

All’aumentare di σ la “campana” si allarga, infatti σ è una misura di dispersione: più è
grande, più i dati sono dispersi. In figura σ = 1/2, 1, 3/2. Se x è una variabile gaussiana di
media µ e varianza σ2,

P (−σ < x− µ < σ) ≃ 0.6826895

P (−2σ < x− µ < 2σ) ≃ 0.9544997

P (−3σ < x− µ < 3σ) ≃ 0.9973002

P (−1.95996σ < x− µ < 1.95996σ) ≃ 0.95

Per N → +∞ la variabile aleatoria

1√
N

N∑
i=1

(Xi − p)

tende proprio a una variabile aleatoria gaussiana, di media nulla e di varianza p(1 − p).
Più in generale vale il teorema del limite centrale: siano X1, X2 . . . variabili aleatorie
indipendenti e con la stessa distribuzione, di media µ e varianza σ2. Allora

1√
N

N∑
i=1

Xi

tende a una variabile aleatoria gaussiana di media µ e varianza σ2.

Il fatto descritto da questo teorema ci permette di precisare meglio il rapporto tra la media
empirica in esperimenti ripetuti e il valore atteso: la media empirica

mN =
1

N

N∑
i=1

Xi
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è approssimativamente distribuita come una variabile aleatoria gaussiana, di media µ e de-
viazione standard σ/

√
N , e questo fatto è fondamentale nelle applicazioni. La situazione più

tipica è quella di voler conoscere una proprietà media di una popolazione statistica. Faccio
qualche esempio: in ambito politico sociologico, le intenzioni di voto dei cittadini di uno sta-
to per un referendum, la propensione alla lettura negli adolescenti; nell’ambito delle scienze
della vita, in contenuto di sostanze nocive nelle specie dei vari livelli trofici, le dimensioni
medie degli adulti di specie animali acquatiche. In tutti questi esempi, non si può ottenere la
misura su tutta la popolazione, dunque ci si accontenta di misurare i dati su un campione.
Non entro nella teoria del campionamento, e mi limito a considerare il caso più semplice, in
cui il campione sia ottenuto scegliendo in sequenza un elemento a caso della popolazione.
In questo modo siamo esattamente nella condizione descritta dalle ipotesi del teorema del
limite centrale, e la media empirica sul campione sarà uno stimatore della media vera, con
errore che decresce proporzionalmente alla radice quadrata della dimensione del campione.
Nella pratica, sono molto più comuni i campionamenti senza ripetizione, in cui il campione
è scelto tutto insieme. Il risultato non cambia, e si tenga presente che se la popolazione è
grande rispetto alla numerosità del campione, una strategia di campionamento con ripetizione
difficilmente genererà un campione con ripetizioni.

Un’osservazione sulla varianza nei campionamenti. La legge dei grandi numeri e il teorema del
limite centrale ci dicono che la media empirica è uno stimatore della media di popolazione.
In particolare, il suo valore atteso è proprio la media di popolazione.
Se conoscessimo la media di popolazione,

1

N

∑
i

(Xi − ⟨X⟩)2

sarebbe uno stimatore della varianza. Però ⟨X⟩ non è nota, e va sostituita con la media
empirica mN . In questo modo, però, si ottiene uno stimatore non corretto, nel senso che il
suo valore atteso non è uguale alla varianza di popolazione.
Si chiama varianza campionaria il numero

s2N =
1

N − 1

∑
i

(Xi −mN)
2

Si prova che il suo valore atteso, in un campionamento casuale con ripetizioni, è pari alla
varianza di popolazione. (Nel caso di campionamento senza ripetizioni, il valore atteso è pari
alla varianza campionaria di tutta la popolazione, che, se la popolazione è molto numerosa,
differisce di poco da quella di popolazione).
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Capitolo 5

Indici di diversità

La statistica descrittiva fornisce anche strumenti per la definizione di indici di biodiversità
(indici che fanno parte dell’ampia classe degli indici di diversità), che misurano quanto poco
omogenea sia una distribuzione.
Per fare un esempio concreto con cui introdurre questi indici, considero una situazione in
cui su due territori si misurano le presenze di 3 differenti varietà di una pianta (V1, V2, V3)
secondo la seguente tabella di abbondanze.

territorio V1 V2 V3
A 0.20 0.30 0.50
B 0.30 0.35 0.35
C 0.10 0.20 0.70
D 0.40 0 0.60

Stiamo lavorando sulla tabella di frequenze relative di variabili nominali. Il primo indice
utile è la ricchezza di specie cioè il numero di fattori a frequenza non nulla. Questo
indice è 3 per territori A, B, C, ed è 2 per il territorio D, dove dunque c’è meno biodiversità.

Si possono però considerare indici più sofisticati, legati alla descrizione probabilistica dei dati.
Supponiamo di essere nel territorio A, e di scegliere casualmente una pianta. La tabella delle
frequenze relative ci dà la probabilità con cui osserveremo le tre possibili varietà,

p1 = P (V 1) = 0.2, p2 = P (V 2) = 0.3, p3 = P (V 3) = 0.5

Per dare la misura della biodiversità, possiamo calcolare la probabilità che due piante scelte
a caso siano uguali. Se questo numero è alto, c’è poca biodiversità, se è basso ce ne è molta.
Il calcolo è facile, e si fa usando le regole per il calcolo della probabilità. Sia x1 la varietà a
cui appartiene la prima pianta scelta, e sia x2 la varietà a cui appartiene la seconda pianta.
Vogliamo calcolare

P (x1 = x2) = P (x1 = V 1, x2 = V 1) + P (x1 = V 3, x2 = V 3) + P (x1 = V 3, x2 = V 3)

(si usa la regola della somma perché si tratta di eventi incompatibili). Per calcolare il valore
dei singoli addendi possiamo usare la regola del prodotto per il calcolo della probabilità degli
eventi indipendenti. Si ottiene

P (x1 = x2) = p21 + p22 + p23
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In caso di n varietà,

P (x1 = x2) =
n∑

i=1

p2i

Questo numero si chiama indice di Simpson, e misura l’uguaglianza, più che la diversità,
nel senso che il valore più alto possibile è 1, e si ottiene se c’è solo una specie, e dunque
si ha il minimo possibile di biodiversità e il massimo dell’uguaglianza. Fissato il numero n
di specie, il minimo di questo indice si ha quando le abbondanze relative sono uguali, che
dunque devono essere pari a 1/n, e dunque

P (x1 = x2) =
n∑

i=1

1

n2
= n

1

n2
=

1

n

Si noti che, nello studio della genetica degli eucarioti, se p1, p2, p3 sono le frequenze dei tre
possibili alleli di un gene in una popolazione, allora questo numero è l’omozigosità, cioè
la frequenza relativa degli omozigoti. L’opposto di questo indice è l’eterozigosità, cioè la
probabilità di incontrare un eterozigote, che dunque è pari a

1−
n∑

i=1

p2i

Nello studio della biodiversità, questo indice è l’indice di Gini-Simpson, e vale 0 se non
c’è biodiversità, mentre vale 1 − 1/n, se c’è la massima biodiversità, fissata la ricchezza di
specie n.
Per esercizio, si calcoli questo indice per i tre territori della tabella precedente.

Si possono avere indici uguali anche in presenza di situazioni differenti di biodiversità: per
esempio avere moltissime specie con bassa frequenza relativa, può essere equivalente ad avere
poche specie con frequenze piuttosto differenti.
Per poter distinguere tra queste situazioni si utilizzano delle generalizzazioni di questo indice,
che si ottengono a partire da un’interpretazione dell’indice di Simpson. Si può considerare
pi come l’abbondanza relativa ai della specie i. Dunque

n∑
i=1

p2i =
n∑

i=1

pipi =
n∑

i=1

piai = valore atteso dell’abbondanza relativa

Dato q > 0, si definisce la famiglia di indice di uguaglianza

λq =
n∑

i=1

pia
q
i =

n∑
i=1

pq+1
i

che è il valore atteso della potenza q dell’abbondanza relativa. A partire da questo indice si
può costruire il profilo di diversità

∆q =
1

q
(1− λq)
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Per q = 1 si ottiene l’indice di Gini-Simpson. Più è grande q, più il contributo delle basse
frequenze diminuisce. Per fare un esempio, se ho 10 specie con frequenza 1/100, nell’indice di
Simpson ho un contributo 10/1002 = 1/1000, nel caso di λ2 ho un contributo 10/1003 = 10−5

(si veda nel grafico successivo lo scavalcamento delle curve di C e D). Dunque al crescere di
q questo indice trascura le abbondanze piccole. Al contrario, al decrescere di q si esalta il
contributo alla diversità dovuto alle specie di piccola abbondanza relativa. Vale dunque la
pena calcolare il limite per q che tende a 0, ultimo valore possibile per questo indice. Per chi
se lo ricorda, questo calcolo si può fare con la regola di de l’Hôpital, osservando che

d

dq
p1+q =

d

dq
e(1+q) ln p = p1+q ln p

Dunque

∆0 = lim
q→0

1

q
(1− λq) = −

n∑
i=1

pi ln pi

Questo indice si chiama entropia di Shannon e ha un ruolo cruciale anche in informatica
teorica, perché permette di definire il contenuto di informazione di una sequenza di simboli.
Più è bassa l’entropia, meno informazione c’è, meno biodiversità c’è.
Si noti che l’entropia di Shannon è il valore atteso di meno il logaritmo della probabilità.
Si può pensare che − ln pi quantifichi la “sorpresa” di osservare l’evento di frequenza pi: se
pi = 1 la sospresa è 0, se pi = 0 la sorpresa è infinita (si noti la coincidenza formale con la
legge di Weber-Fechner: se pi passa da 1/10 a 1/100, la sorpresa raddoppia).
Si faccia attenzione al caso in cui una delle pi sia nulla: un normale programma di com-
puter non calcola 0 ln 0, ma il calcolo del limite ci permette di attribuire il valore 0 a
quest’espressione.
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A partire da λq si può costruire un’ulteriore famiglia di indici. Ricordando che λ1 è l’indice
di Simpson, che vale 1 se c’è una sola specie, e vale 1/n se ce ne sono n, si può definire

D1 =
1

λ1

che si può interpretare come il numero effettivo di specie, cioè il numero di specie di
distribuzione uguale, che darebbe lo stesso valore osservato di λ1. Si generalizza questo
numero considerando

Dq =
1

λ
1/q
q

che prende il nome di numero di Hill di ordine q+1, e che si interpreta sempre in termini
di numero effettivo di specie. Nel limite q → 0 si ottiene D0 = e−∆0 . Invece nel limite
q → +∞ questo indice tende a

1

max pi

che come si vede dipende solo dalla specie di frequenza massima.
Questi indici sono più leggibili, in quanto rappresentano un “numero di specie”, e infatti
nell’esempio che stiamo considerando, variano tra 1.5 e 3.
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Capitolo 6

Introduzione ai test statistici

6.1 Test binomiale esatto
[BDM 12.4] e materiale di laboratorio.

6.2 z−test e t−test
Introduco questi test con un esempio. Supponiamo che sia noto che la distribuzione delle
lunghezze dei pesci di una data specie in laghetto sia ben approssimata da una gaussiana di
media 14 cm e deviazione standard 1.2 cm.
In un laghetto vicino viene trovato un pesce simile, ma di lunghezza 14 cm.
Ci chiediamo se il fatto che la lunghezza sia un po’ diversa, ci faccia dubitare che il pesce sia
della stessa specie di quelli del primo laghetto.
L’ipotesi H0 di questo test è che il dato sulla lunghezza del pesce si il risultato di una
estrazione casuale di una variabile gaussiana Z, di media 14 e deviazione standard 1.2. Il
valore p del test è la probabilità delle code:

> 2*pnorm(14,mean=12.5,sd=1.2,lower.tail=F)
[1] 0.2112995

Il valore è superiore al 20%, dunque non possiamo dubitare dell’ipotesi H0. Si osservi che è
noto che per una gaussiana standard le code oltre 1.96 pesano il 5%. Il valore standardizzato
della misura è

14− 12.5

1.2
= 1.25 < 1.96

e infatti non possiamo rifiutare H0.

Supponiamo ora di aver trovato sei pesci nel secondo laghetto, e che la media delle loro
lunghezze sia 14. In questo caso la variabile aleatoria che rappresenta la misura è la media
di 6 misure. È noto dalla teoria che se le misure Xi sono variabili gaussiane, di media m e
deviazione standard σ, allora la media empirica

mN =
1

N

N∑
i=1

Xi

è gaussiana di media m e deviazione standard σ/
√
N .
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Quindi per testare l’ipotesi nulla H0 che i 6 pesci abbiano lunghezze distribuite come quelle
dei pesci del primo laghetto, calcoliamo il valore

z =
14− 12.5

1.2/
√
6

= 1.25×
√
6 ≈ 3

valore che supera 2.57 che corrisponde a un valore di soglia per p di 0.01, ma è al di sotto di
3.29 che corrisponde al valore di soglia p = 0.001. Infatti

> 2*pnorm(14,mean=12.5,sd=1.2/sqrt(6),lower.tail=F)
[1] 0.002199647

In questo caso dobbiamo smentire l’ipotesi nulla H0, e concludere che i pesci del secondo
laghetto sono di una specie con una caratteristica differente (la lunghezza).
A questo punto possiamo anche chiederci quant’è la lunghezza media dei pesci del secondo
laghetto. Il valore misurato è 14, ma il valore vero sarà presumibilmente un numero differente.
Si chiama intervallo di confidenza per la media vera l’insieme di tutti i valori m che, assunti
come ipotesi nulla, non verrebbero smentiti dal test, al livello di soglia stabilita. In questo
caso la soglia è 5%, che viene descritta come livello di fiducia del 95%. Quali sono il valori
di m, media teorica, che non verrebbero smentiti dal dato osservato? Per le gaussiane questo
conto è semplice: deve essere

|m− 14|
1.2/

√
6

≤ 1.96

cioè
|m− 14| ≤ 1.96× 1.2/

√
6

che corrisponde all’intervallo richiesto

m ∈ (14− 0.96, 14 + 0.96) = (13.04, 14.96).

Il valore della media teorica 12.5 non è in questo intervallo, e infatti l’ipotesi nulla è stata
rifiutata alla soglia del 5%. Si noti, infine, che non si può affermare che con probabilità del
5% la media vera è in quell’intervallo, perché la media vera è un numero, non una variabile
aleatoria.

Questo facile esempio purtroppo non è realistico, perché in genere non c’è modo di conoscere
la deviazione standard di una popolazione. Questa informazione viene in genere ottenuta
per campionamento. Ricordo che si chiama varianza campionaria

s2N =
1

N − 1

N∑
i=1

(Xi −mN)
2

dove mN è la media empirica. Si divide per N − 1 perché i numeri Xi −mN non sono tutti
indipendenti, infatti la loro somma fa 0. Il numero di quelli indipendenti è N − 1, ed è detto
numero dei gradi di libertà, abbreviato con df (“degrees of freedom”).
Quando abbiamo a che fare con dati empirici, dobbiamo tener presente che la varianza non
è nota, ma è solo stimata approssimativamente dalla varianza campionaria. Se misuriamo
N dati con media empirica (campionaria) mN e deviazione standard sN , e assumiamo come
H0 che la media vera (detta anche “teorica”) sia il valore assegnato m, allora il numero

t =
mN −m

sN/
√
N

74



è distribuito non come una variabile aleatoria gaussiana, ma come una variabile “t di Student”
a N−1 gradi di libertà. Il t−test mette alla prova l’ipotesi H0 che la media sia m, misurando
le code della distribuzione di Student rispetto al valore calcolato t. Supponiamo per esempio
che le misure delle lunghezze dei sei pesci fossero

15.79 12.72 15.84 12.28 12.94 14.42

La media empirica è approssimativamente 14, la deviazione standard campionaria è 1.58. Il
valore della statistica è

t = (14− 12.5)/1.59×
√
6 ≈ 2.3225

che va valutato rispetto alla distribuzione t di Student a 5 grandi di libertà:

2*pt(2.32,df=5,lower.tail=F)
[1] 0.06784195

(le istruzioni pt rt dt qt sono le analoghe di pnrom rnorm dnorm qnorm per la distribu-
zione t di Student). Anche in questo caso rifiutiamo l’ipotesi nulla. Sia per il t−test che
per il calcolo degli intervalli di confidenza per la media possiamo ricorrere direttamente a
un’istruzione di R:

> t.test(y,m=12.5)

One Sample t-test

data: y
t = 2.3225, df = 5, p-value = 0.06784
alternative hypothesis: true mean is not equal to 12.5
95 percent confidence interval:
12.33993 15.65674

sample estimates:
mean of x
13.99833
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Condizioni per fare il t-test
L’uso del t-test prevede che la popolazione da cui è estratto il campione sia gaussiana. La
verifica “a occhio” della guassianità può essere fatta con il comando qnorm che confronta i
quantili del campione con i quantili di una guassiana standard; se nel grafico si vede, appros-
simativamente, una retta, allora il campione si può considerare guassiano. Una risposta più
affidabile si ottiene con un apposito test shapiro.test.

Il t−test si usa anche per il confronto tra medie di gruppi. Consideriamo la figura seguente,
in cui sono riportati due istogrammi appaiati per 20 valori X (in arancione), e 20 valori Y ,
in viola. Le due corrispondenti medie sono indicate dai due triangoli vicino a 0, e valgono
mX ≈ 0.01, e mY ≈ 0.33, e la differenza è δ = mX −mY ≈ −0.32.
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Ci chiediamo se queste due medie sono differenti.

t.test(X,Y)

Welch Two Sample t-test

data: x20 and y20
t = -1.4027, df = 38, p-value = 0.1688
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.7782064 0.1411719

sample estimates:
mean of x mean of y

0.009658318 0.328175561
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Come si vede la risposta è no, e viene anche calcolato l’intervallo di confidenza per la
differenza tra le due medie, che infatti contiene lo 0.
Ripetiamo l’analisi nel caso di 100 dati per X e 100 dati per Y , rappresentati nella seconda
figura.
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I valori delle medie sono gli stessi di prima: mX ≈ 0.01, e mY ≈ 0.33, e la differenza è
δ = mX −mY ≈ −0.32.

t.test(X,Y)

Welch Two Sample t-test

data: x100 and y100
t = -2.3209, df = 196.9, p-value = 0.02132
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.58916599 -0.04786849

sample estimates:
mean of x mean of y

0.009658318 0.328175561

In questo caso, però, il test indica che dobbiamo rifiutare l’ipotesi nulla, nonostante la
differenza tra le due medie sia la stessa. Cosa è cambiato?
Il test deve valutare se la differenza delle due medie sia frutto del campionamento (ipotesi
H0) oppure no (ipotesi alternativa). In entrambi i casi la differenza è la stessa, e neanche
gli istogrammi sono poi così differenti. Il fatto è che nel secondo caso la differenza è grande
rispetto all’errore statistico che si compie su una media di 100 dati.
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A rigore, il t-test per due campioni richiede
- normalità dei campioni
- uguaglianza delle varianze
Ho già segnalato che la normalità si verifica mediante lo shapiro.test. Per l’uguaglianza
delle varianze il test più consigliato è il test di Levene (che R ha su un pacchetto separato).
In altri contesti utilizzeremo il test di Barteltt. All’atto pratico non serve la verifica dell’u-
guaglianza delle varianze, perché esiste una variante del t-test che è in grado di gestire questo
caso, ed è il test di Welch. L’istruzione t.test in caso di due campioni fa esattamente il
test di Welch.
Cosa fare se i dati non sono distribuiti normalmente? Se il numero di dati è grande, il
teorema centrale del limite, che vale per i campionamenti casuali, dovrebbe consentire di
usare il t-test. Come si capisce se il numero di dati è sufficientemente grande? Come
indicazioni pratiche, non usate il t-test in caso di distribuzioni fortemente asimmetriche, e
in caso di presenza di outlier (vedi WS capitolo 13), Altrimenti è il caso di passare a un
test non parametrico, in cui H0 non si basa su una distruzione nota (binomiale, gaussiana,
etc.). In particolare, l’alternativa non parametrica al t-test è il test dei segni dei ranghi
di Wilcoxon (oppure la variante Mann-Whitney test). Per questo test H0 è un’affermazione
sulla mediana (o sulla differenza di due mediane), e non usa l’assunzione di normalità.

Un altro possibile modo di trattare i casi non gaussiani è di “trasformare” i dati. Per esempio
i dati di concentrazione non hanno tipicamente distribuzioni normali, ma il loro logaritmo si.
In genere si “prova” a trasformare dati con funzioni semplici, come il logaritmo o le potenze.
Avere una “teoria” su come sono distribuiti i dati può essere di aiuto, come nel caso delle
concentrazioni.

Osservo infine che in genere i test non parametrici sono “meno potenti” dei test parametrici.
Infatti l’errore di tipo II nei test parametrici, cioè di accettare l’ipotesi nulla anche se è
falsa, è in realtà un’affermazione sul parametro che governa una distribuzione (per esempio
la media di una variabile gaussiana). Nel caso di un test non parametrico, lo “spazio” delle
ipotesi alternative è più largo.

6.3 ANOVA

Tra i test che riguardano variabili statistiche di conteggio ho brevemente illustrato il test
delle proporzioni di R, che è un’implementazione del test del χ2. Consideriamo il seguente
esempio. Sono stati sperimentati tre trattamenti riguardo la fertilizzazione su piante di
pomodoro: “bat” (batteri), “fert” (chimici), “ctrl” (controllo: nessuna fertilizzante). A fine
esperimento ogni pianta è stata classificata con la variabile dicotomica “ad alta vitalità” /
“a bassa vitalità”. In questa situazione si chiama variabile di risposta la variabile con cui
viene descritto lo stato vitale della pianta, e variabile esplicativa il trattamento. Il motivo
di questi nomi è che il trattamento deve “spiegare” come varia nell’esperimento lo stato vitale
della pianta, cioè come la pianta “risponde” ai diversi trattamenti.
Questi sono i dati misurati.

ctrl bat fert
alta 25 33 50
bassa 20 30 30
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Per verificare l’ipotesi H0 che i trattamenti non hanno effetto sulla vitalità, si fa un test di
indipendenza del χ2, o, equivalentemente, un test delle proporzioni:

> av <- c(25,33,50)
> bv <- c(20,30,30)
> prop.test(av,av+bv)

3-sample test for equality of proportions without continuity correction
data: av out of av + bv
X-squared = 1.5629, df = 2, p-value = 0.4577
alternative hypothesis: two.sided
sample estimates:

prop 1 prop 2 prop 3
0.5555556 0.5238095 0.6250000

Fare questo test è concettualmente differente dal confrontare le tre proporzioni a coppie,
facendo tre test, uno per ogni coppia. Infatti, fare più test aumenta la probabilità di com-
mettere una errore di tipo I, cioè di rifiutare l’ipotesi nulla se è vera, e dunque si rischia
di vedere una differenza dove non c’è. Infatti se in un confronto abbiamo probabilità α di
commettere un errore di tipo I, in k confronti la probabilità che almeno un confronto dia un
falso positivo è 1 − (1 − α)k. Per α = 0.05 e k = 3 questo valore è 0.14, molto più grande
di 0.05. Ci sono dunque tipi strategie per trattare questi casi. Una consiste nel diminuire la
soglia di significatività α in funzione del numero k dei livelli della variabile esplicativa. Per
la precisione, la correzione di Bonferroni prevede di dividere α per k. Questa correzione è
però giudicata troppo “conservativa”, cioè sfavorevole all’individuazione dei veri positivi. La
strategia più comune è quella di usare dei test che fanno un confronto complessivo, discri-
minando tra l’ipotesi H0 che non ci siano differenze tra i trattamenti, e l’ipotesi alternativa
che almeno uno dei trattamenti abbia un effetto.

Nel caso di variabili di “risposta” nominali si usa il test del χ2 che in effetti discrimina l’indi-
pendenza della variabile risposta dalla variabile esplicativa. Nel caso di variabili quantitative,
se i livelli della variabile esplicativa fossero due useremmo il t-test, per più livelli si ricorre
all’ANOVA che ora descrivo.

Consideriamo di nuovo la variabile esplicativa data dal trattamento, a 3 livelli, e una variabile
di risposta continua, la concentrazione di flavonoidi sulla buccia dei pomodori. Supponiamo
di aver fatto due esperimenti in condizioni differenti (per esempio bassa irrigazione e irriga-
zione normale). I dati sono riportati nei grafici: in arancione i dati di controllo, in viola quelli
per fertilizzazione batterica, in verde quelli per fertilizzazione chimica. I triangoli in basso
segnano i valori delle medie nei tre gruppi, il triangolo rosso segna la media complessiva.
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Quello che il test deve valutare è se la differenza tra le medie (equivalentemente la differenza
con la media complessiva) può essere una fluttuazione del caso, e dunque essere dell’ordine
della deviazione standard delle medie campionarie, oppure se le medie sono ben separate tra
loro. Nelle figure, nel primo caso si osservano medie ben separate, nel secondo un po’ meno.
In realtà in entrambi i casi H0 andrà rifiutata, il numero dati della simulazione è elevato,
300 per ogni trattamento, dunque la deviazione standard campionaria è circa un ventesimo
di quella delle singole variabili.
Al differenza del t-test che confronta due medie, ora abbiamo a che fare con tre medie. Anche
in questo caso non dobbiamo utilizzare tre t-test per confrontare le medie a due a due, ma
una procedura complessiva che ci dica se ci sono medie differenti, poi cercheremo di indagare
su quali siano queste medie differenti.
Il test il questione prende il nome di ANOVA (Analisys Of VAriance); è un test parametrico
che assume la normalità dei dati dei diversi gruppi e anche che la varianza dei gruppi sia la
stessa (questa proprietà prende il nome di omoschedasticità). Vediamo come funziona.
Vedremo un esempio in laboratorio in cui delle piante di pomodoro vengono sottoposte a
tre differenti trattamenti: fertilizzazione mediante fertilizzanti chimici ("fert") o batterici
("bat"), o non fertilizzate (controllo, "cntrl"), e saremo interessati agli effetti di questi trat-
tamenti sulla quantità di flavonoidi sulla buccia, come misura della salute della pianta. In
questo caso la variabile esplicativa ha tre possibili valori “fert”, “bat”, “cntrl”. Indicherò con
a il numero di livelli della variabile esplicativa, in questo caso a = 3. Per ogni trattamento,
vengono misurati dei dati. Indico con n1 il numero di dati relativi al primo trattamento, con
n2 il numero di dati relativi al secondo, etc.. Il numero totale di dati è

N = n1 + . . . na.

Se tutti gli ni sono uguali a un valore n, allora l’esperimento si dice bilanciato, e in tal caso
N = an. Indico con Xik il k−esimo dato relativo al trattamento i−esimo. Indico con

Xi• =
1

ni

ni∑
k=1

Xik

la media della variabile per il trattamento i−esimo. La media complessiva è

X•• =
1

N

a∑
i=1

ni∑
k=1

Xik =
1

N

a∑
i=1

(
ni

1

ni

ni∑
k=1

Xik

)
=

a∑
i=1

ni

N
Xi•
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che è anche uguale alla media delle medie relative ai trattamenti, pesate con la dimensione
del campione. Come facciamo in generale per una variabile statistica, descriviamo questa
variabile come la sua media più uno scarto. Per ogni dato relativo al trattamento i possiamo
dunque scrivere

Xik = Xi• + εik.

Si ricordi che a i fissato le variabili εik hanno media nulla, Diamo un’espressione dello scarto
dalla media complessiva:

Xik −X•• = (Xi• −X••) + εik.

Dunque lo scarto di un dato dalla media complessiva è pari allo scarto della media del
gruppo dalla media complessiva dato da Xi• − Xi•, più lo scarto εik del dato rispetto alla
media del gruppo. Indico con αi lo scarto della medie del gruppo dalla media complessiva
αi = Xi• −X••

Si chiama devianza totale la somma dei quadrati degli scarti tra i dati e la media comples-
siva

SStot =
a∑

i=1

ni∑
k=1

(Xik −X••)
2

Con “SS” si intende “Sum of Squares”, dunque questa è la somma dei quadrati totale. La
esplicito rispetto in αi e εik.. Ricordo che ogni volta che se scrivo dei dati come la media più
la somma degli scarti, la stessa decomposizione vale per la media del quadrato, che è pari
al quadrato della media sommato alla media del quadrato degli scarti. In questo caso, per
ogni i, εik hanno media nulla in k, e la media di Xik −X•• è αi. Dunque

1

ni

ni∑
k=1

(Xik −X••)
2 = α2

i +
1

ni

ni∑
k=1

ε2ik

Moltiplicando questa uguaglianza per ni e sommando su i si ottiene

SStot =
a∑

i=1

niα
2
i +

a∑
i=1

ni∑
k=1

ε2ik.

L’ultimo termine è la devianza dentro i gruppi definiti dai diversi trattamenti:

SSdentro =
a∑

i=1

ni∑
k=1

ε2ik.

Invece il primo termine è la devianza tra i gruppi, perché misura lo scarto delle medie dei
gruppi dalla media complessiva:

SStra =
a∑

i=1

niα
2
i =

a∑
i=1

ni(Xi• −X••)
2.

Se vale l’ipotesi nulla che non c’è differenza tra i gruppi, le differenze tra le medie sono solo il
risultato di differenti campionamenti da una stessa distribuzione, dunque la grandezza della
variabilità tra i gruppi deve essere simile alla grandezza della variabilità dentro i gruppi.
Come esprime questo fatto in termini di SStra e SSdentro? È necessario calcolare le varianze
campionarie, dividendo le devianze per il numero di gradi di libertà. La devianza tra i gruppi
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è la somma di a scarti dalla media complessiva, dunque ha a−1 gradi di libertà. La devianza
nel gruppo i-esimo ha ni − 1 gradi di libertà, dunque la somma ha N − a gradi di libertà.
Quindi:

s2tot =
1

N − 1
SStot

s2tra =
1

a− 1
SStra

s2dentro =
1

N − a
SSdentro

La teoria afferma che se vale l’ipotesi nulla, allora s2tra è uguale a s2dentro e il rapporto
s2tra/s

2
dentro ha una precisa distribuzione, quella di una cosiddetta “variabile F di Fisher a

(a − 1, N − a) gradi di libertà”. Se non vale l’ipotesi nulla, s2tra sarà maggiore di s2dentro. Il
test è dunque un test monolatero. Il test ANOVA traduce in questo modo il confronto tra
più medie, nel confronto tra varianza tra i gruppi e varianza nei gruppi.

ANOVA a due vie
Può accadere che ci sia più di una variabile esplicativa, per esempio potremmo avere delle
piante sottoposte a vari trattamenti, in differenti condizioni di irrigazione. In questo caso
si parla di ANOVA a due vie, intendendo appunto che ci sono due variabili esplicative.
Supponiamo dunque di avere una prima variabile A che assume a distinti valori A1, . . . Aa,
e una seconda B che assume b distinti valori B1, . . . Bb. Ci sono dunque ab valori possibili
della coppia di variabili (A,B); assumiamo che per ogni coppia abbiano di avere n dati
(esperimento bilanciato). Indico con Xijk il valore del k−esimo dato per cui A = Ai e
B = Bj. Il numero totale dei dati sia dunque N = nab.
Posso operare esattamente come ho fatto prima, considerando come variabile esplicativa la
coppia di variabili (A,B), e dunque scrivo

Xijk −X••• = δij + εijk (6.3.1)

dove εijk ha media nulla in k,
δij = Xij• −X•••

è lo scarto tra le media Xij• della variabile nel gruppo (Ai, Bj) e la media complessiva X•••.
Determiniamo i gradi di libertà delle variabili in gioco. Fissati i e j, εijk è una variabile
con n− 1 gradi di libertà, perché la somma in k è 0. Dunque, complessivamente, εijk è una
variabile a

a∑
i=1

b∑
j=1

(n− 1) = abn− ab = N − ab

gradi di libertà.
Si può notare che nell’espressione (6.3.1) il membro di sinistra ha N − 1 gradi di libertà,
mentre δij, che ha somma nulla in i, j, ha ab − 1 gradi di libertà. Come verifica di questi
conti si nota facilmente che

N − 1 = ab− 1 +N − ab.

Fin’ora abbiamo trattato le due variabili A e B come un’unica variabile di coppia, mentre
vogliamo indagare sugli effetti delle due variabili sulla variabili di risposta. Per fare questo
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dobbiamo analizzare il termine di scarto dalle media del gruppo δij che riscriviamo nel
seguente modo, sommando e sottraendo le medie di X a A fissato e a B fissato:

δij = Xij• −X•••

= Xi•• −X••• +Xij• −Xi••

= (Xi•• −X•••) + (X•j• −X•••) + (Xij• −Xi•• −X•j• +X•••)

Chiamo con αi lo scarto della media del gruppo Ai dalla media complessiva:

αi = Xi•• −X•••

con βj lo lo scarto della media del gruppo Bi dalla media complessiva:

X•j• −X•••

Il termine rimanente lo indico con rij:

rij = Xij• −Xi•• −X•j• +X•••

Osservo che αi ha a − 1 gradi di libertà, βj ne ha b − 1, mentre rij, che ha media nulla sia
in i che in j, ne ha (a− 1)(b− 1) (come gli scarti di una tipica tabella di contingenza).

Siamo finalmente pronti a mostrare come funziona un test ANOVA a due vie. Abbiamo
scritto lo scarto come:

Xijk −X••• = αi + βj + rij + εijk,

cioè come a la somma di 4 contributi: l’effetto αi del valore della variabile A, l’effetto βj del
valore della variabile B, l’effetto rij dell’interazione tra i valori delle variabili A e B, e una
variabilità intrinseca εijk. Corrispondentemente, con calcoli analoghi a quelli già fatti per
l’ANOVA a una via che non ripeto, decompongo la devianza:

SStot = SSA + SSB + SSAB + SSdentro

dove SSA è la devianza tra i gruppi definiti dalla variabile A, dove SSB è la devianza tra
i gruppi definiti dalla variabile B, SSAB è la devianza tra i gruppi definiti dall’interazione
delle variabili, SSdentro è la devianza dentro ai gruppi.
Corrispondentemente si determinano le varianze

s2tot =
1

N − 1
SStot, s2A =

1

a− 1
SSA, s

2
B =

1

b− 1
SSB,

s2AB =
1

(a− 1)(b− 1)
SSAB, s2dentro =

1

N − ab
SSdentro.

Il test ANOVA a questo punto consiste in tre confronti:

s2A/s
2
dentro, s2B/s

2
dentro, s2AB/s

2
dentro

con lo scopo di scoprire se c’è una variabilità in A, in B, o nell’interazione AB, che eccede
la variabilità interna dei dati.

Questo test si chiama ANOVA a due vie con interazione. È possibile rinunciare a osservare
l’interazione delle due variabili, considerando la decomposizione

Xijk −X••• = αi + βj + ε̄ijk,
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cioè immaginando che lo scarto abbia una componente spiegata da A, una spiegata da B e
una parte intrinsecamente variabile. In pratica abbiamo accorpato rij nella parte variabile:

ε̄ijk = rij + εijk.

Operando in questo modo ε̄ijk non ha più media nulla in k, ma ha media nulla in k e i, e in
k e j. I suoi gradi di libertà sono la somma di quelli di r e di ε, cioè (a−1)(b−1)+N −ab =
N − a− b+ 1. La decomposizione della devianza diventa

SStot = SSA + SSB + SSdentro

Le rispettive varianze sono

s2tot =
1

N − 1
SStot, s2A =

1

a− 1
SSA, s2B =

1

b− 1
SSB, s2dentro =

1

N − a− b+ 1
SSdentro.

Il test ANOVA consiste in due confronti:

s2A/s
2
dentro, s2B/s

2
dentro.

Si noti che rispetto al caso con interazione, cambia s2dentro dunque valutare se la variabile A
ha effetto sulla variabile di risposta può dare risultati differenti, a seconda che consideriamo
o meno l’interazione tra le due variabili.

Le ipotesi per poter usare ANOVA sono la normalità dei dati, e l’uguaglianza delle varianze.
Così come per il t-test, se le distribuzioni sono normali ma le varianze sono differenti, esistono
correzioni che permettono di utilizzare ancora ANOVA, in particolare su R utilizzeremo
oneway.test. Se la normalità è violata, si può utilizzare il test non parametrico di Kruskal-
Wallis, che più che un test per le medie è un test che verifica se i dati dei vari gruppi vengono
dalla stessa distribuzione. Si osservi che se questo è vero (ipotesi nulla), in particolare le
varianze devono essere uguali. Dunque non ha molto senso usare il Kruskal-Wallis in assenza
di omoschedasticità, fatto che comunque implica la differenza tra le distribuzioni. Uno dei
test post-hoc nel caso non parametrico che può essere usato è il pairwise.wilcox.
Si tenga infine presente che ANOVA è considerato un test robusto. Cito qui quanto ri-
portato dal testo [WS]. “L’ANOVA è sorprendentemente robusta rispetto alle deviazioni
dall’assunzione di normalità, in particolare quando le dimensioni campionarie sono grandi.
Questa robustezza deriva dalle proprietà delle medie campionarie descritte dal teorema del
limite centrale (...). L’ANOVA è robusta anche rispetto agli scostamenti dall’assunzione di
uguale varianza nelle k popolazioni, ma soltanto se i campioni hanno tutti all’incirca la stessa
dimensione.”

In un contesto reale di ricerca o lavoro, vi consiglio di approfondire le condizioni di utilizza-
bilità dei test che volete usare (che purtroppo R non riporta nelle sue pagine di manuale).

6.3.1 ANOVA con prove ripetute

Considero i seguenti dati, relativi a 10 soggetti, indicati dal numero progressivo s, di cui
vengono misurate le ore di sonno o, dopo g = 0, 30, 60 giorni di un trattamento t = PT
oppure FT .
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s g t o
1 0 PT 5.6
1 30 PT 3.3
1 60 PT 8.9
2 0 PT 4.8
2 30 PT 4.7
2 60 PT 7.9
3 0 PT 3.9
3 30 PT 5.3
3 60 PT 8.5
4 0 PT 5.8
4 30 PT 4.5
4 60 PT 8.2
5 0 PT 3.5
5 30 PT 3.7
5 60 PT 6.9

s g t o
6 0 FT 3.9
6 30 FT 4.7
6 60 FT 7.0
7 0 FT 4.1
7 30 FT 4.9
7 60 FT 5.6
8 0 FT 5.0
8 30 FT 3.8
8 60 FT 5.3
9 0 FT 4.0
9 30 FT 4.7
9 60 FT 5.3

10 0 FT 4.0
10 30 FT 4.8
10 60 FT 6.3

In quello che segue considero la variabile “giorni” come una variabile nominale. Chiarisco
questo punto: se la considerassi come una variabile quantitativa in un modello di regressione
mi aspetterei un effetto lineare, dunque passare da 0 a 30 giorni o da 30 a 60 giorni dovrebbe
dare la stessa variazione sul numero di ore dormite. Questa ipotesi è fisiologicamente poco
consistente: una terapia farmacologica a lunga durata cambia la biochimica, dunque “0”,
“30”, “60” possono essere pensati come tre distinti stati biochimici dei pazienti, senza una
relazione quantitativa. Quindi prima di continuare ridefiniamo le variabili ore e soggetto
come variabili nominali.
sonno$giorno <- as.factor(sonno$giorno)
sonno$soggetto <- as.factor(sonno$soggetto)

Ignoriamo la variabile trattamento e chiediamoci se la variabile “giorno” (cioè da quanto
tempo il soggetto è sotto trattamento) influenza il numero di ore dormite.

summary(aov(ore~giorno,data=sonno))
Df Sum Sq Mean Sq F value Pr(>F)

giorno 2 43.01 21.506 22.77 1.6e-06 ***
Residuals 27 25.50 0.944

In questa ANOVA c’è un errore concettuale, perché per ogni soggetto vengono fatte tre
misure, dunque parte della devianza residua 36.51 si spiega in termini di devianza dovuta
alla variabile “soggetto”, e questa devianza va tolta dal confronto per capire se la devianza
relativa alla variabile “giorno” sia grande.
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Evidenziamo i contributi alla devianza:

summary(aov(ore~giorno+soggetto,data=sonno))
Df Sum Sq Mean Sq F value Pr(>F)

giorno 2 43.01 21.506 24.133 8.05e-06 ***
soggetto 9 9.46 1.051 1.179 0.364
Residuals 18 16.04 0.891

In quest’ANOVA la devianza residua viene decomposta nella parte soggetto, da 9 df, che
viene messa da parte, e in una vera parte residua, da 18 df. Il test viene fatto rapportando
la varianza tra i giorni alla varianza residua.
In questo output c’è un p-value che non ha senso calcolare, quello per la variabile soggetto.
Per avere un output più ’pulito’ c’è una precisa istruzione di R:

summary(aov(ore~giorno+Error(soggetto/giorno),data=sonno))

Error: soggetto
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 9 9.456 1.051

Error: soggetto:giorno
Df Sum Sq Mean Sq F value Pr(>F)

giorno 2 43.01 21.506 24.13 8.05e-06 ***
Residuals 18 16.04 0.891

Osservo che lo stesso output si sarebbe ottenuto con il comando
summary(aov(ore∼giorno+Error(soggetto),data=sonno)).
La sintassi soggetto/giorno mette sono in evidenza che la variabilità di giorno è dentro
soggetto: per ogni soggetto infatti ci sono tutti e tre i livelli di giorno. Nel gergo di ANOVA
si dice che giorno è una variabile within la variabile soggetto

Trascuriamo ora la variabile giorno, e vediamo se il tipo di trattamento influenza il numero
di ore di sonno. Per ogni trattamento ho 15 dati, dunque potrei pensare di fare il seguente
test.

summary(aov(ore~trattamento,data=sonno))
Df Sum Sq Mean Sq F value Pr(>F)

trattamento 1 4.88 4.880 2.148 0.154
Residuals 28 63.63 2.272

Anche qui però sto facendo un errore, infatti questa ANOVA interpreta i dati come l’esito dei
due trattamenti su due differenti campioni di 15 soggetti, invece ogni trattamento riguarda
solo 5 soggetti, con 3 misure per ogni soggetto al variare dei giorni di terapia.
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Per provare a capire come procedere, decomponiamo la devianza più che possiamo:

summary(aov(ore~trattamento*soggetto*giorno,data=sonno))
Df Sum Sq Mean Sq

trattamento 1 4.88 4.880
soggetto 8 4.58 0.572
giorno 2 43.01 21.506
trattamento:giorno 2 7.87 3.936
soggetto:giorno 16 8.17 0.510

Si noti che non c’è variabilità residua, perché una volta specificato il soggetto, il numero di ore,
il trattamento ci siamo ridotto a un solo dato. Inoltre manca la coppia trattamento:soggetto,
perché la variabile trattamento è beetwen i soggetti, infatti ogni trattamento è stato assegnato
a diversi soggetti ma ogni soggetto è stato somministrato un solo trattamento. Ricordo che
invece la variabile giorno è within i soggetti, cioè “giorno” ha i differenti valori in tutti i
soggetti.

Non è facilissimo capire i df della tabella. Sono immediati quelli di trattamento, variabile a
due livelli e con 1 df, quelli di giorno, variabile a tre livelli e 2 df, quelli di trattamento:giorno,
tabella 3 × 2 a 2 df. La coppia soggetto:giorno sembrerebbe una tabella 10 × 3 e dunque
dovrebbe avere 18 df. Però i soggetti sono divisi in due gruppi, a seconda del trattamento.
Dunque in realtà si tratta di due tabelle 5×3, da 8 df ciascuna, in totale appunto 16. Anche
i df di soggetto non sono 9 ma 8, proprio perché si tratta di due gruppi da 5 soggetti.

Se siamo interessati a valutare la devianza dovuta al trattamento, dobbiamo considerare
come residua tutta la devianza che non è relativa alla variabile giorno. Rimane dunque solo
la variabile soggetto, a 8 df, che in questo senso fa da residuo per il trattamento. Si veda
infatti l’output del seguente comando:

summary(aov(ore~trattamento+Error(soggetto),data=sonno))

Error: soggetto
Df Sum Sq Mean Sq F value Pr(>F)

trattamento 1 4.880 4.880 8.532 0.0193 *
Residuals 8 4.576 0.572

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 20 59.05 2.953

La devianza residua su cui viene fatto il test per il trattamento è quella degli 8 df di soggetto.
La devianza residua trascurata è la somma delle devianze relative alla variabile giorno.
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Infine, analizziamo i due fattori trattamento e giorno.

summary(aov(ore~trattamento*giorno+Error(soggetto/giorno),data=sonno))

Error: soggetto
Df Sum Sq Mean Sq F value Pr(>F)

trattamento 1 4.880 4.880 8.532 0.0193 *
Residuals 8 4.576 0.572

Error: soggetto:giorno
Df Sum Sq Mean Sq F value Pr(>F)

giorno 2 43.01 21.506 42.128 4.21e-07 ***
trattamento:giorno 2 7.87 3.936 7.711 0.00452 **
Residuals 16 8.17 0.510

Come si vede la prima parte dell’output contiene l’informazione sulla variabile trattamento,
che abbiamo già visto con il comando precedente. La seconda parte contiene l’informazione
sulla variabile giorno e sulla coppia trattamento giorno. Si noti che il risultato relativo
all’effetto della variabile giorno è un po’ differente rispetto al risultato del comando
summary(aov(ore~giorno+Error(soggetto/giorno),data=sonno))
perché ora parte della devianza è stata spiegata con la variabile trattamento (come accade
in genere quanto si passa dall’analisi a una via all’analisi a due vie).

6.3.2 Test per i coefficienti della retta di regressione

Il test dell’ANOVA appartiene ai test per verificare l’esistenza di un modello lineare nella
relazione tra variabili, dunque ha delle similitudini con la retta di regressione. Infatti, in
ANOVA consideriamo

Xik = X•• + αi + εik,

cioè pensiamo che il dato Xik sia predetto dal valore medio complessivo X••, più un effetto
αi dovuto al trattamento, più un errore, εik sperabilmente gaussiano. Il valore di αi è
Xi• − X••, e il test ANOVA serve a capire se questa differenza è nulla, in pratica se la
variabile trattamento influenza i dati, oppure no.
Nei modelli di regressione lineare scriviamo

Yk = aXk + b+ εk,

dove aXk + b è la predizione in base al valore della variabile esplicativa, mentre εk è la
differenza tra il valore vero e quello predetto, ed è un numero modellizzato con una variabile
aleatoria di media nulla, sperabilmente gaussiana. Inoltre poiché la retta di regressione passa
per il baricentro, abbiamo scritto anche

Yk = Ȳ + a(Xk − X̄) + εk

cioè Yk è predetto dalla media generale Ȳ più un effetto dovuto alla variabile esplicativa
X, più la variabilità intrinseca ε. Si può testare se c’è l’effetto della variabile esplicativa:
l’ipotesi nulla sarà che non c’è effetto, cioè che a = 0. Il test è analogo all’ANOVA e si fa
decomponendo la devianza.
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Ricordo che abbiamo provato che
σ2
Y = a2σ2

x + σ2
ε

cioè abbiamo decomposto la varianza della variabile di risposta in una parte spiegata dal
modello lineare, e quindi spiegata dalla variabilità della variabile esplicativa, e una variabilità
intrinseca, chiamata residua. Rileggiamo in termini di devianza questa uguaglianza:∑

k

(∆Yk)
2 = a2

∑
k

(∆Xk)
2 +

∑
k

ε2k.

La devianza totale, a N −1 df, è la somma della devianza “tra i gruppi”, che in questo caso è
la devianza dovuta alla relazione lineare con la variabile esplicativa, più la varianza residua.
Osserviamo che la somma delle εk è nulla, dunque sembrerebbe che ci sono N − 1 gradi di
libertà. Però la procedura di ottimizzazione per a, quella che ci permette di trovare la retta
di regressione, impone l’indipendenza statistica tra ∆Xk e εk, infatti risulta

ε∆X = (∆Y − a∆X)∆X = σxy − aσ2
X

che è proprio 0 perché a = σXY /σ
2
X . Dunque εk hanno somma nulla e verificano ε∆X = 0,

quindi è sufficiente conoscerne N − 2 per determinare gli altri due: (infatti usando una
condizione possiamo esprimere uno degli εk in funzione degli altri N − 1, quindi possiamo
scrivere la seconda condizione in termini di N − 1 variabili εk e ricavarne una in funzione
delle rimanenti N − 2). Dunque i gradi di libertà sono N − 2. Ne segue che la devianza
dovuta a X ha un solo grado di libertà.
L’istruzione per costruire la retta di regressione della variabile y in funzione della variabile x
è summary(lm(y~x)). Per testare l’ipotesi nulla che a sia zero, basta considerare il summary
del modello. Per esempio, per la variabile spazio di frenata dist in funzione della velocità
speed per il dataset cars, il comando summary(lm(dist~speed,data=cars)) dà

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -17.5791 6.7584 -2.601 0.0123 *
speed 3.9324 0.4155 9.464 1.49e-12 ***

Il secondo p-value è quello relativo alla variabile speed.
Si confronti questo output con quello di summary(aov(dist~speed,data=cars)) che dà

Df Sum Sq Mean Sq F value Pr(>F)
speed 1 21185 21185 89.57 1.49e-12 ***
Residuals 48 11354 237

Come si vede la riga relativa a dist dà lo stesso p-value. Si noti che speed ha un df, perché
è una variabile quantitativa e non qualitativa, infatti il suo effetto è spiegato da un solo
numero, il coefficiente a.

Nell’output del test per il modello lineare c’è anche il p-value per l’intercetta, cioè viene
anche testata l’ipotesi nulla che il coefficiente b sia 0. Non entro nel dettaglio di questo test.
Osservo solo che, sia per a che per b, attraverso i test si possono ottenere degli intervalli
di fiducia. In pratica si possono considerare tutte le rette aX + b che sono compatibili
con i dati. In questo modo si possono determinare gli intervalli di fiducia per i valori di
aX + b; calcolato per ogni possibile valore di X si ottengono in questo modo le bande di
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fiducia per la retta di regressione. Se invece vogliamo valutare l’intervallo di fiducia
della predizione, dobbiamo considerare anche la variabilità dell’errore ε. In questo modo si
ottengono le bande di fiducia per la predizione.
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6.4 Modelli lineari generalizzati e massima verosimiglian-
za

Rivediamo da un altro punto di vista la costruzione della retta di regressione per due variabili
statistiche, X e Y , partendo da un modello, ipotizziamo cioè che

Yk = aXk + b+ εk

dove εk sono il risultato di un’estrazione di variabili aleatorie gaussiane indipendenti di media
nulla e varianza σ2, non nota.
Vogliamo trovare i “migliori valori” dei coefficienti a e b. Possiamo ragionare in questo modo.
Aver visto Yk equivale ad aver visto l’errore εk = Yk − (aXk + b), e, per ipotesi, la densità di
probabilità di questo evento è

1√
2πσ2

e−(Yk−(aXk+b))2/2σ2

.

Poiché abbiamo anche supposto l’indipendenza, la densità di probabilità dell’evento che
abbiamo osservato, cioè i valori Y1, . . . YN in corrispondenza di X1, . . . XN , è il prodotto delle
densità:

1

(2πσ2)N/2

N∏
k=1

e−(Yk−(aXk+b))2/2σ2

.
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Un criterio per scegliere i migliori valori di a e b è quello detto di massima verosimiglian-
za, cioè di trovare a e b che rendono massima possibile la probabilità di vedere quello che
effettivamente abbiamo visto (in questo esempio massimizziamo la densità di probabilità).
Per poter fare questo conto, notiamo che rendere massima una quantità è la stessa cosa che
rendere massimo il suo logaritmo, perché il logaritmo è una funzione crescente. Calcoliamo
il logaritmo della densità di probabilità scritta sopra:

−N

2
ln(2πσ2)− 1

2σ2

N∑
k=1

(Yk − (aXk + b))2.

L’unica parte di quest’espressione che dipende da a e b è quella dentro la sommatoria, e com-
pare con un segno meno. Dunque i valori di a e b che realizzano la massima verosimiglianza
sono quelli che rendono minima la somma

1

2σ2

N∑
k=1

(Yk − (aXk + b))2,

e questa condizione è esattamente quella dei minimi quadrati.
In conclusione di questo esempio, la retta dei minimi quadrati è anche la retta che si ottiene
con il principio di massima verosimiglianza, nell’ipotesi modellistica che Y = aX + b + ε,
dove ε è gaussiana di media nulla e deviazione standard fissata.

Il principio di massima verosimiglianza si usa anche per determinare interessanti dipendenze
non lineari. Farò qui l’esempio della regressione “logistica”. Prima però rivediamo la relazione

Yk = aXk + b+ εk

Il valore aXk + b predice < Yk >, il valore atteso della variabile Y calcolata nel posto Xk.
Dunque ci sono tre elementi:

• un predittore lineare, aX + b;

• una relazione tra la media e il predittore lineare, in questo caso l’identità: < Yk >=
aXk + b (questa funzione si chiama “funzione di link”, o funzione di collegamento);

• una assegnata legge di probabilità per la variabile Yk: in questo caso una gaussiana di
deviazione standard fissata, e di media determinata attraverso il predittore lineare.

Consideriamo ora un esempio, tratto da [IM]. Nello studio delle cause della tragica esplosione
dello shuttle del 1986 si è compreso che ha giocato un ruolo la rottura degli anelli a “O”, e
che la probabilità di rottura è una funzione della temperatura al momento del lancio. Ci
sei anelli a “O”, e questi sono i dati riguardo alla loro rottura (riporto solo quelli relativi ai
due lanci avvenuti a temperatura più bassa e quello avvenuto alla massima temperatura; la
temperatura è in gradi Fahrenheit):

lancio temp danno
1 53 1
1 53 1
1 53 0
1 53 0
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1 53 0
1 53 0
2 57 1
2 57 0
2 57 0
2 57 0
2 57 0
2 57 0
23 81 0
23 81 0
23 81 0
23 81 0
23 81 0
23 81 0

In questo caso, si può ipotizzare che la variabile aleatoria “rottura”, che vale 1 se l’anello si
rompe, e 0 se non si rompe, sia una bernoulliana b di parametro incognito p (la probabilità
di rottura), con p che decresce al crescere della temperatura. Si osservi che p =< b > è
esattamente il valore atteso della variabile bernoulliana,
Si può immaginare che p sia 1 per temperature molto basse e sia 0 per temperature molto
alte. La relazione tra p e T non può dunque essere lineare. Serve una funzione che passi
da un valore all’altro in modo monotono. Ci sono vari candidati per questa funzione di
collegamento, e una delle più usate è la funzione logistica di cui abbiamo parlato a proposito
del modello di Verhulst. Si tratta di funzioni del tipo

f(x) =
1

1 + e−α(x−x0)

Si veda [BDM] esempio 6.2.4.
Cerchiamo dunque il miglior predittore lineare tale che

p(T ) =< b(T ) >=
1

1 + e−(aT+b)

Questa relazione può essere anche scritta al contrario, con qualche semplice passaggio:

log
p

1− p
= aT + b

La funzione che a p associa log p
1−p

si chiama “logit”. In questo caso, dunque, la funzione di
link è la funzione logit, e la variabile aleatoria è bernoulliana.
Come si trova il miglior predittore lineare? Si usa la massima verosimiglianza. Se pk è la
probabilità di rottura alla temperatura Tk, e ho visto bk (cioè 1 se c’è stata rottura, 0 se non
c’è stata), la probabilità dell’evento che ho visto è

pbkk (1− pk)
1−bk ,

infatti se ho bk vale 1, 1−bk = 0 e dunque l’espressione pbkk (1−pk)
1−bk è uguale a p1k(1−pk)

0 =
pk, che è proprio la probabilità di bk = 1. Al contrario, se bk = 0, l’espressione è uguale a
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p0k(1− pk)
1 = 1− pk, che è la probabilità di bk = 0. Il miglior predittore lineare per logit(p)

si ottiene dunque massimizzando

N∏
k=1

(
1

1 + e−(aTk+b)

)bk
(

1

1 + e+(aTk+b)

)1−bk

,

dove ho usato il fatto che

1− pk = 1− 1

1 + e−(aTk+b)
=

1

1 + e+(aTk+b)
.

R farà il conto per noi, trovando a e b.

In tutti i fenomeni in cui ci si aspetta un valore di soglia si utilizzano logistiche. Sono però
possibili altre scelte. Consideriamo ancora una variabile bernoulliana b, ma supponiamo
che p = P (Z > aT + b), cioè il parametro p della variabile bernoulliana è governato dal
comportamento di una variabile normale standard. In questo caso la funzione che lega p a
T è

p = pnrom(aT + b)

cioè la probabilità cumulata per una gaussiana standard. La funzione inversa che esprime
aT + b in termini di p è detta probit e ha un andamento analogo alla logistica (ma con
transizione più netta, perché pnorm ha code meno pesanti della logistica).
C’è un’ulteriore possibile scelta, che calcola il predittore lineare per il log-log complemen-
tare (abbreviato in cloglog) di p, cioè la funzione

ln(− ln(1− p)) = aT + b.

La funzione inversa è
p = 1− e−eaT+b

,

che ha code estremamente più leggere, e dunque descrive transizioni brusche.
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Capitolo 7

Componenti principali

Per una introduzione all’argomento vedi [BDM 9.3].

7.1 Un esempio
Il metodo delle componenti principali è un metodo che si applica quando si hanno molte
variabili statistiche più o meno correlate tra loro, e ci si aspetta che la variabilità dei dati
possa però essere descritta con poche variabili.
Supponiamo di considerare K dati, ognuno composto dalla misura di N variabili statistiche
differenti. Geometricamente, ogni dato è un punto in uno spazio dimensione N , in cui gli assi
perpendicolari rappresentano le N variabili statistiche. Il metodo delle componenti principali
permette di trovare dei nuovi assi perpendicolari, intorno al baricentro, in modo che i dati
si possono descrivere, con un piccolo errore, usandone solo alcune. In questo modo si riduce
la dimensione dello spazio delle variabili, trascurando quelle meno rilevanti.
Invece di dare una spiegazione astratta, passo direttamente all’esempio concreto. La teoria
che sto descrivendo è utilissima se N è grande, ma da indicazioni interessanti anche per
per piccoli N . In particolare, nell’esempio che considereremo avremo 15 anfore (dunque
K = 15) e per ogni anfora avremo la misura di 4 differenti caratteristiche geometriche, e
dunque N = 4:

h è l’altezza

la è la larghezza dell’apertura

im è l’altezza alla quale inizia il manico

fm è l’altezza alla quale finisce il manico

Ci si può chiedere quanto queste variabili siano correlate tra loro, e se è sufficiente conside-
rarne meno di 4 per descrivere la geometrica delle anfore.
Per esempio, se ci fosse correlazione massima tra tutte le variabili, vorrebbe dire che esiste un
solo modello di anfora, prodotto in varie dimensioni. Se invece di fossero due tipi di anfore,
quelle con manico grande e quelle con manico piccolo, indipendentemente dalla dimensione
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complessiva, la variabile importante sarebbe fm-im, che sarebbe poco correlata con l’altezza
e la larghezza. Se esistessero anfore di qualunque altezza e qualunque larghezza, altezza e
larghezza dovrebbero essere poco correlate, dunque entrambe le variabili dovrebbero essere
separatamente prese in considerazione.
Questi sono i dati, in centimetri

fm im h la
1 24.4 21.3 30.4 10.7
2 23.6 20.3 32.2 8.8
3 20.9 17.5 29.6 8.9
4 22.7 19.2 28.4 11.0
5 20.7 17.7 27.7 10.1
6 25.6 21.8 33.8 9.4
7 21.4 17.7 30.9 11.6
8 26.9 23.5 33.9 12.6
9 24.5 21.2 32.8 10.1
10 24.1 21.1 33.2 10.0
11 26.6 22.8 33.8 10.4
12 20.9 17.6 27.9 10.4
13 24.6 21.1 34.1 10.4
14 25.0 22.1 35.6 11.6
15 24.5 21.1 34.0 10.5

L’altezza media è 31.89 cm, la larghezza media è 10.43 cm, mentre la media delle variabili im
e fm è, rispettivamente, 20.40 e 23.76 centimetri.
Nella tabella seguente sono riportati le differenze dai valori medi.

fm im h la
1 0.64 0.90 -1.49 0.27
2 -0.16 -0.10 0.31 -1.63
3 -2.86 -2.90 -2.29 -1.53
4 -1.06 -1.20 -3.49 0.57
5 -3.06 -2.70 -4.19 -0.33
6 1.84 1.40 1.91 -1.03
7 -2.36 -2.70 -0.99 1.17
8 3.14 3.10 2.01 2.17
9 0.74 0.80 0.91 -0.33
10 0.34 0.70 1.31 -0.43
11 2.84 2.40 1.91 -0.03
12 -2.86 -2.80 -3.99 -0.03
13 0.84 0.70 2.21 -0.03
14 1.24 1.70 3.71 1.17
15 0.74 0.70 2.11 0.07
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Questa è la matrice di covarianza

fm im h la
fm 4.1154286 3.9978571 4.3001429 0.6042857
im 3.9978571 3.9585714 4.2200000 0.6171429
h 4.3001429 4.2200000 6.5126667 0.4890476
la 0.6042857 0.6171429 0.4890476 1.0223810

da cui si nota la piccola variabilità della larghezza rispetto alle altre variabili, mentre questa
è la matrice di correlazione

fm im h la
fm 1.0000000 0.9904909 0.8306076 0.2945971
im 0.9904909 1.0000000 0.8311201 0.3067680
h 0.8306076 0.8311201 1.0000000 0.1895245
la 0.2945971 0.3067680 0.1895245 1.0000000

Come si vede, c’è una grande correlazione tra inizio e fine dell’altezza del manico, e queste
due variabili sono anche abbastanza correlate all’altezza, mentre la larghezza è poco correlata
con tutte le variabili.

L’istruzione di R che trova le componenti principali è prcomp. Vediamo l’output del comando
nel caso delle anfore.

Rotation:
PC1 PC2 PC3 PC4

fm -0.53442345 -0.3883972 0.2791895 0.696844594
im -0.52435231 -0.3883532 0.2454524 -0.716930628
h -0.65829082 0.6819521 -0.3187255 0.002937617
la -0.07809888 -0.4829811 -0.8719062 0.020235025

La “rotazione” permette di passare dalle vecchie coordinate fm, im, h, la, alle nuove
PC1,...PC4 (ricordo che il baricentro è posto in 0). In particolare, se un dato aveva coor-
dinate fm, im, h, la (rispetto al baricentro) la nuova prima coordinata del dato si ottiene
moltiplicando questi valori per la prima colonna e poi sommando

−0.574fm− 0.576im− 0.531h− 0.237la

Analogamente per le altre.

Questa è la matrice di covarianza nelle nuove coordinate

PC1 PC2 PC3 PC4
PC1 1.342307e+01 1.636774e-15 -9.102342e-16 -3.010668e-15
PC2 1.636774e-15 1.314039e+00 5.290519e-17 -1.687205e-17
PC3 -9.102342e-16 5.290519e-17 8.339232e-01 -2.647550e-17
PC4 -3.010668e-15 -1.687205e-17 -2.647550e-17 3.801110e-02

Come si vede le varianza sono in ordine decrescente, e le covarianze sono praticamente nulle:
le componenti principali sono variabili statisticamente indipendenti.
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Importance of components:
PC1 PC2 PC3 PC4

Standard deviation 3.6638 1.14632 0.91319 0.19496
Proportion of Variance 0.8599 0.08418 0.05343 0.00244
Cumulative Proportion 0.8599 0.94414 0.99756 1.00000

Si legge qui quanto la varianza di ogni nuova variabile contribuisce al totale, cioè quanta
parte della varianza complessiva è “spiegata” dalle varie componenti. Poiché sono in ordine
decrescente, è utile guardare anche la proporzione cumulata, che ci dice che le prime due
componenti spiegano circa il 95% della variabilità dei dati, mentre la quarta componente è
piuttosto inutile.
Guardando la matrice di rotazione, si nota che la prima componente principale è fatta in
ugual misura dalle prime tre altezze, e in misura minore dalla larghezza (tutte con lo stesso
segno). Quindi è una misura della dimensione dell’oggetto. Poiché tutti i segni sono negativi,
più è alto PC1, più l’oggetto è piccolo. La dimensione delle anfore spiega circa l’85% della
variabilità dei dati.
La seconda componente è composta sostanzialmente dalla larghezza e, in misura minore, ma
con segno opposto, dalle altre tre variabili. Dunque è una misura della larghezza, ma anche
dello schiacciamento dell’oggetto: più PC2 è grande, più l’anfora è tozza e i manici sono
bassi.
La componente PC3 ha fm e im uguali ma opposti in segno all’altezza e larghezza dunque
rappresenta la posizione relativa del manico rispetto alle dimensioni principali
Infine, PC4 misura la larghezza del manico rispetto alla media, infatti è praticamente
0.7(im− fm).
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