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Introduzione

Uno degli scopi di questo corso ¢ farti conoscere alcuni argomenti della matematica che
possono esserti utile come esperto di tematiche ambientali. Una parte del corso sara dedicata
ai metodi della statistica, con esercitazioni con R in laboratorio. In queste note troverai poco
di questi argomenti, perché esistono testi soddisfacenti, che elenco nel paragrafo successivo.
Qui troverai invece gli appunti sulla parte di modellistica matematica. In estrema sintesi,
un modello matematico consiste in

a) identificare variabili e parametri con cui descrivere alcuni aspetti di un fenomeno;
b) inventare/scoprire le relazione matematiche tra queste grandezze;
c) esplorare con strumenti analitici e numerici il comportamento del modello, in particolare

e fare previsioni
e studiare come cambia il modello al cambiare dei parametri

e validare il modello, cioé confrontare gli esiti dell’esplorazione con il comportamento
reale del sistema.

Incontrerai, presumibilmente, due tipi di difficolta. La prima é che potresti far fatica a seguire
alcuni passaggi e alcuni ragionamenti, perché hai dimenticato molta della matematica che ti
¢ stata insegnata nella triennale. In questi appunti ci sono esercizi che servono a risvegliare
le tue competenze matematiche, ma il corso non tratta di questo, ha ambizioni maggiori che
insegnarti di nuovo i logaritmi (ma servira anche a questo).

La seconda difficolta é piu sottile e ha a che fare con l'interazione tra i due piani descrittivi,
quello naturalistico e quello matematico. Questa interazione é indispensabile nei punti a) e
b), in cui la comprensione degli aspetti biologici e ambientali si deve tradurre in relazioni
matematiche (ti aiutera il fatto che in molti casi queste relazioni sono di pochi tipi differenti).
Nel punto c), invece, é solo la matematica che deve parlare, con i suoi metodi deduttivi. La
difficolta consiste nel non confondere la spiegazione matematica con quella naturalistica.
L’utilita della matematica é proprio qui: dopo aver stabilito il modello, non serve I'intuito o
I’esperienza o qualche conoscenza pitt profonda: € solo il ragionamento, aiutato da strumenti
analitici e numerici, che ci permette di arrivare a una descrizione quantitativa e qualitativa
del fenomeno.

Questa relazione tra matematica e natura é chiarissima in fisica (per esempio non possiamo
mandare un razzo sulla Luna a “intuito”), mentre solo alcuni aspetti delle scienze naturali
sono matematizzati, e questo rende piu facile la confusione tra i due piani.

Faccio un esempio in dettaglio: il modello preda-predatore ¢ stato inventato negli anni
20 del 1900, indipendentemente da due scienziati, Lotke (biofisico, chimico, statistico) e
Volterra (fisico-matematico di questo ateneo). In particolare Volterra si interesso al fatto



che, durante la prima guerra mondiale, il numero di pesci predatori nel mare Adriatico
crebbe in corrispondenza del diminuire della pesca delle specie adatte al consumo umano. Ci
occuperemo di questo famoso modello, qui noto solo che, una volte comprese le relazioni tra le
grandezze in gioco, si possono matematicamente ottenere varie conclusioni, sulla numerosita
dei pesci preda e dei pesci predatori:

t. le due numerosita hanno un andamento periodico nel tempo;

1. le numerosita medie nel tempo dipendono solo dai parametri del sistema, quindi anche se
improvvisamente aggiungessimo prede al sistema, o eliminassimo la meta dei predatori,
le medie non cambierebbero;

iii. se cambiamo i parametri del sistema, rendendo pit semplice la vita delle prede (simu-
lando in questo modo la riduzione della pesca), allora il numero medio di prede non
cambia, mentre il numero medio di predatori aumenta.

Si possono dare delle spiegazioni naturalistiche di queste conclusioni, per esempio

i. se le prende crescono di numero, allora i predatori possono nutrirsi di pit, dunque
cresceranno di numero facendo decrescere il numero di prede; questo fatto comporte-
ra la diminuzione del numero di predatori che permettera cosi I’aumento delle prede,
chiudendo il ciclo;

1. il sistema € in equilibrio ecologico, e non cambia se si cambiano artificialmente le
numerosita delle popolazioni (se no non sarebbe un equilibrio);

114. in una catena trofica, le specie piu in alto traggono maggior vantaggio da un aumento
delle risorse alla base.

Non c¢’¢ nulla di biologicamente errato in questo ragionamenti, ma sono di qualita differente
da quelli matematici, infatti sono descrittivi, mentre quelli matematici sono deduttivi. In
un ragionamento matematico, le conclusioni sono inevitabili conseguenze delle premesse; per
cambiare conclusioni si devono cambiare le ipotesi di partenza del modello, approfondendone
la comprensione. Le spiegazioni naturalistiche in questo caso riassumono le conclusioni ma-
tematiche, e la loro ragionevolezza ci fa capire che il modello ha una sua solidita dal punto di
vista biologico. D’altra parte, la matematica contribuisce ad ampliare le conoscenze non solo
con le sue deduzioni, ma anche costringendo lo scienziato a trovarne una sintesi naturalistica
(fard esempi a proposito dello shift dei sistemi ecologici).

In questo corso tentero di insegnarvi a distinguere i ragionamenti matematici da quelli natu-
ralistici, mostrandovi come la matematica permetta a volte di raggiungere conclusioni altri-
menti inaccessibili, e come alcuni concetti matematici in realta siano alla base di descrizioni
naturalistiche che oggi ci sembrano ovvie.
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Capitolo 1

Richiami sulle funzioni elementari

Scopo di questa sezione é rinfrescare qualche nozione di matematica elementare in termini
modellistici. Lo faro discutendo alcuni semplici esercizi. Trovate esempi pitt dettagliati e la
teoria su [BDM capp. 4,5,6,7].

1.1 Leggi lineari

FEsercizio 1. Pressione

La pressione atmosferica a livello del mare ¢ di (circa) una atmosfera, e cresce di (circa) una atmosfera
ogni 10 metri di profondita.

a. Scrivi la legge P(h) che esprime il valore della pressione P in funzione del valore della profondita
h.

b. Disegnane il grafico

c. Cosa ¢ proporzionale nella legge che hai scritto?

d. Cosa rappresenta geometricamente il coefficiente di h nel grafico che hai disegnato?

Risposte

a. P(h)y=1+4+h/10

b. Il grafico & rappresentato da una retta (anzi da una semiretta, perché la legge descritta
non ha senso per h < 0).

c. Sono proporzionali la variazione di pressione AP e la variazione di profondita Ah. Piu
formalmente, dati hqy e ho,

d. Il coefficiente di proporzionalita tra AP e Ah é la velocita media di variazione di P

con h, ed é costante:
AP 1
Ah 10
qualunque siano hq e hs.



Esercizio 2. Crescita di una larva - BDM esempio 4.1.4 e sequenti

La massa m di una larva di insetto pesa alla nascita 10 g, dopo 20 ore pesa 24 g, dopo 30 ore pesa
30¢g. Disegna questi dati in un grafico.

a. Quanto pesa la larva dopo 10 ore dalla nascita?
b. E dopo 257

c. E dopo 407

(Per risolvere questo esercizio, tra le altre cose hai bisogno di ricordare come si scrive la retta
che passa per due punti, vedi [BDM capitolo 4|)

Va notato che la velocita media di variazione tra t = 0 e t = 20 ¢ diversa da quella tra ¢t = 24
e t = 30. Per dare un valore di m(10) si ricorre all'interpolazione lineare tra i dati per
t =0 et =20. Per dare un valore di m(25) si ricorre all'interpolazione tra i dati per ¢t = 20
e t = 30. Per dare un valore di m(40) si ricorre all’estrapolazione lineare usando i dati
per t =20 e t = 30.

Ricordo che si definisce il concetto fisico e matematico di velocita istantanea passando
al limite il valore della velocita media mandano a 0 I'incremento. Supponendo di conoscere
tutti i valori di m(t), la velocita di variazione istantanea al tempo ¢ &

! Am . m(t + At) — m(t)
AtS0 At At At

Come @ noto, questo valore ¢ per definizione la derivata di m(t) (si vedano [BDM capp. 6,
7] per i richiami su limiti e derivate).

La tecnica di interpolazione e estrapolazione e il concetto di derivata sono due dei motivi
che spiegano ’abbondanza delle leggi lineari in natura: per piccole variazioni, ogni funzione
regolare & ben approssimata da una retta. Vedi [BDM par. 7.1|

1.2 Leggi esponenziali

Esercizio 3. Duplicazione batterica

Sia N(t) il numero di batteri all’ora ¢, in una capsula Petri in cui si possono riprodurre senza vincoli.
Supponiamo che N(0) = 103, e che N raddoppi ogni ora.

a. Quanto vale N(¢)? Quali quantita sono proporzionali?

b. Supponiamo che N raddoppi ogni 3 ore. Quanto vale N (¢)?

Risposte
a. N(t) =103 x 2!
b. N(t) =103 x 2!/3
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Le due leggi appena scritte sono leggi esponenziali. In matematica si usa esprimere le leggi
un una base particolare, il numero e, per motivi legati alle proprieta delle derivate. Ricordo
che Inz ¢ la funzione inversa dell’esponenziale e®. cioé

Ine* =z, ™=y

Dunque
t
2t eln 2 et In2

dove ho usato la proprieta dei logaritmi
Ina® =blna

In generale, la legge di crescita che abbiamo descritto ha la forma
N(t) = Ngeat

e non ¢ evidentemente una legge lineare, infatti la velocita di crescita media non € costante.
Calcoliamo la velocita istantanea, facendo la derivata:

N'(t) = Nyae® = aNge™ = aN(t)

Dunque in una legge di crescita esponenziale, la velocita istantanea di variazione é propor-
zionale alla numerosita.

Un altro modo per descrivere questo modello ¢ di ricordare che il tasso di variazione ¢
proprio il rapporto tra la velocita di variazione e la quantita che stiamo considerando. Per
esempio, tornando all’esempio dei batteri, se la popolazione duplica in un ora, allora il tasso
medio di variazione in un’ora ¢

N(t+1)— N(t)
N(t)

=1=100%

E da notare che che il tasso istantaneo di variazione ¢ invece In2 =~ 0.7. Le leggi esponenziali
descrivono fenomeni con tassi di variazione costanti, ma l'intervallo su cui viene misurato il
tasso deve essere fisso, al variare dell’ampiezza dell’intervallo cambia anche il tasso.

Siamo passati dalle leggi lineari, in cui la velocita di variazione € costante, a una legge in cui
la velocita di variazione non € costante ma proporzionale alla quantita stessa. Torneremo su
questo punto.

1.3 Le scale delle grandezze e i logaritmi

Nei paragrafi precedenti ho provato a convincervi che se sto studiando un fenomeno per
piccole variazioni delle grandezze in gioco, mi posso aspettare una proporzionalita tra esse,
che sara falsa man mano che le variazioni crescono.

In genere, un fenomeno viene descritto per un intervallo (un “range”) di valori delle variabili
che fissa la scala in cui analizzarlo. Nell’esempio della larva I'intervallo & [0, 40], dunque la
scala & quella della decina di gironi. Nell’esempio della pressione non ¢ specificato, ma la
legge scritta varra fino a che 'acqua puo essere considerata incomprimibile, anche a 10 000
metri di profondita.

Al cambiare della scala, un particolare aspetto di un fenomeno cambia radicalmente. Per
esempio, concentriamoci su cosa c¢’¢ intorno a noi alle varie scale di distanze.
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1 m una stanza
100 m il quartiere
10 km la citta
1000 km la nazione
100 000 km il nostro pianeta e lo spazio fino a circa 1/4 della distanza dalla Luna

La scala é ben descritta dal logaritmo della grandezze. Infatti, in questo esempio, se considero
il logaritmo in base 10 ottengo la sequenza 0, 2, 4, 6, che si ottiene con incrementi costanti,
ai quali corrispondono grandezze moltiplicate per 100 = 102

Quando si vogliono rappresentare fenomeni a scale differenti si usano gli assi logaritmici
(vedi [BDM par. 5.2, in particolare le figure 5.15, 5.17])

axr

Un fatto importante & che la legge esponenziale f(x) = ae®”, usando un asse verticale

logaritmico ¢ descritta da una retta, infatti
In f(z) =Ina+ ax

Due insegnamenti;

1. nelle leggi esponenziali ¢’¢ una relazione di proporzionalita tra la scala del fenomeno e la
variabile indipendente;

2. le leggi esponenziali si rappresentano (e si cercano) utilizzando preferibilmente assi verticali
logaritmici.

Ci si potrebbe chiedere quali sono i fenomeni naturali in cui bisogna tenere conto della
variazione di scala. Faccio due esempi, ma ne faremo altri
1. L’acidita delle acque influisce molto sulla biologia delle specie che le abitano. L’acidita si
misura con il pH, che é

pH = —log[H™]

cioé 'opposto del logaritmo in base 10 della concentrazione di ioni idrogeno in moli per
litro. Se il pH ¢ 7, la concentrazione ¢ 107" mol/f. Se cambia il pH cambia la scala della
concentrazione, e sono questi cambiamenti che hanno realmente effetti biologici (vedi BDM
esempi 6.2.11-14).

2. La legge (empirica) di Weber-Fechner asserisce che la variazione della risposta fisiologica a
uno stimolo é proporzionale allo stimolo stesso. Per fare un esempio, avvertiamo facilmente
la differenza in peso tra 100 grammi e 110 grammi, quella tra 1000 e 1100, ma abbiamo
difficolta a distinguere 1000 grammi da 1010 grammi. In formule, se con S indichiamo lo
stimolo, e con p la percezione,

AS
Ap = k—
P="g
che possiamo riscrivere come
AS
- _ S/k
Ap S/

Questa relazione ¢ la stessa che abbiamo provato per le leggi esponenziali. Passando al limite
S'(p) = S/k, dacuiS= SyeP—ro)/k

12



(scritta in questo modo sono sicuro che per p = pg si ha S = Sy). Perd sono interessato
alla percezione in funzione dello stimolo, cioé alla funzione inversa p = p(S). Passando ai
logaritmi si ottiene

S
p(S) :pg—i-k:ln—
So

In entrambi questi esempi ho descritto dei parametri biologici che dipendono dal logaritmo
di quelli fisico/ambientali, cio¢ dalla loro scala. Per questo il logaritmo dovrebbe essere il
migliore amico dello scienziato ambientale.

In questo esempio ho mescolato ragionamenti fisiologici a questione matematiche. Distinguia-
mole. Questa é una assunzione del modello, che riassume semplificandole, delle osservazioni
empiriche di fisiologia:

(P) la variazione di percezione é proporzionale alla variazione specifica dello
stimolo.

In simboli matematici

AS
Ap=Fk
S

A

Con questa equazione abbiamo terminato la formulazione del modello, perché abbiamo tro-
vato la legge che lega le quantita che ci interessano (in questo caso percezione e stimolo).
Da questo punto in poi usiamo solo, deduttivamente, la matematica per ottenere informa-
zioni da questo modello. Il primo passaggio che abbiamo fatto é stato di scrivere il rapporto
incrementale dello stimolo in funzione della percezione, poi siamo passati al limite, rifor-
mulando il modello in termini di velocita istantanea di variazione. Infine abbiamo risolto
I’equazione differenziale e abbiamo manipolato la soluzione con le regole degli esponenziali
e dei logaritmi:

-

.
5()

S'(p) = S/k, da cui S(p) = Spe? Pk o, equivalentemente p(S) = py + k1n

Questa espressione ci dice che

(C) la percezione dipende linearmente dal logaritmo dello stimolo.

Si noti che I'affermazione (C), non é quella di partenza: I'ipotesi che usiamo per costruire il
modello ¢ I'affermazione (P), I'affermazione (C) si ottiene deduttivamente da (P).

1.4 Leggi a potenza
Le leggi a potenza sono le funzioni del tipo

f(z) = ax”.

Al variare di « queste funzioni hanno differenti aspetti. (puoi vedere il loro grafico su BDM
cap 4). Hanno una notevole rilevanza in fisiologia e anche in biologia.

Esercizio 4. Formiche giganti

Supponi di ingrandire una formica di un fattore ¢, cioé di moltiplicare tutte e tre le dimensioni
spaziali per ¢, immaginando di ottenere un organismo con le stesse caratteristiche della formica
originaria.
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Come varia la massa? Come varia I’area della sezione di una zampa? Come varia la pressione che
il peso esercita sulla sezione della zampa?

In questo esercizio si da per scontato che la formica ingrandita abbia la stessa densita di
massa della formica piccola, cioé sia fatta delle stesse sostanze. Il volume scala con 2,
poiché la densita e costante, anche la massa, che é pari alla densita per il volume, scala come
¢3. L’area della sezione della zampa, invece, scala come £?, mentre la pressione, che ¢ pari
alla forza (in questo caso la forza peso) diviso I'area della sezione, scala come

G2 =

Ne segue che portare le dimensioni di una formica da un millimetro a un metro, aumenta la
pressione sulle zampe di mille volte.

Questo esempio serve per far notare che la biologica di un organismo ha la sua scala di
validita, e per cambiare scala sono necessari adattamenti fisiologici importanti.

Esercizio 5. Superfici e volumi

Nello sviluppo degli organismi, le crescite dei tessuti sono a volte fenomeni di superficie. E dunque
utile calcolare come scala la superficie all’aumentare del volume.

Poiché il volume V scala come la lunghezza al cubo, possiamo invertire questa relazione e affermare
che la lunghezza scala con V1/3; la superficie scala come la lunghezza al quadrato, e dunque come

V2/3,

L’esponente 2/3 che abbiamo ottenuto nell’esercizio si incontra spesso nelle leggi allometriche,
cioé nelle leggi che esprimono delle relazioni quantitative tra le parti degli organismi.

Per esempio, il peso dell'uovo degli uccelli va come il peso dell’uccello elevato alla 2/3,
considerando uccelli di specie differenti (vedi BDM esempio 5.2.10).

- —
301 '
nvv.l\l""“"d_,il Moa |
Kiwi ’I,:\-IIT"j;/—»‘ ) 4
£ — W/
A >
3 o /
= N/
~ [0
- 5
’ 0
e R
- '/
3 W
c " /
3 \
: of
a 5
4 W/
) n g
/“ Peso atteso delle uova per uecelll grand! come || kiwi
’
/
Colibn
Logaritmo del peso corporeo

In questo grafico che ho preso da S.J. Gould Bravo brontosauro par. 7, “Le uova del kiwi e la
campana della liberta”, & riportato un tipo grafico il scala logaritmica “dal topo all’elefante”
(in questo caso dal colibri al moa), cioé un grafico in cui sono riportate le dimensioni degli
organismi di uno stesso genere ma in scala logaritmica, che viene usata perché tra un specie
e l'altra c¢’é veramente un salto di scala.

Anche I'asse verticale di questo grafico é un asse logaritmico, e questo tipo di grafico viene
chiamato log-log. Nell’asse verticale sono rappresenti i pesi tipici delle uova e si nota come
la relazione tra le due grandezze sia lineare; in particolare la pendenza ¢ 2/3. Dunque, se
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indichiamo con u il peso delle uova e con p il peso dell’uccello, il grafico ci dice che
Inu(p) =c+2/3Inp

(la costante ¢ non ¢ determinabile dal grafico, ma non é 0, perché il punto in basso a destra
non ¢é 'origine). Determiniamo u(p): passando all’esponenziale

2/3
elnu(p) — ec+2/31np — e % elnp _ 26p2/3

Questo esempio serve a ricordare che se il grafico in scala log-log & una retta, allora la
relazione tra le grandezze ¢ data da una legge a potenza. Nel caso del grafico in scala log, in
cui solo I'asse verticale é logaritmico, si ottiene invece una legge esponenziale.

Concludo per completezza ’esempio del kiwi. Il kiwi ha un uovo di dimensioni spropositate
in relazione alla dimensione dell’individuo. Varie spiegazioni “darwiniane’ vengono date
per questo fatto, Gould e altri suggeriscono che il kiwi sia una versione ‘nana” di uccelli
ora estinti, della dimensione del moa. Per suffragare questa tesi, osservano che I’esponente
che lega il peso delle uova e il peso totale tra individui della stessa specie ¢ circa 0.15, e
non 2/3 (in generale la potenza delle leggi allometriche intraspecifiche & differente e piu
piccolo dell’esponente nel caso di leggi interspecifiche). Dal grafico si vede come il punto che
rappresenta il kiwi sia, in scala log-log, sulla retta di pendenza 0.15 che passa per il punto
che rappresenta il moa.

Esercizio 6.

Nell’'ultimo esempio ho ipotizzato che I'asse rappresentasse il logaritmo naturale, dunque da Inu =
¢+ 2/31Inp ho ottenuto

u = ap®’?,
con a = ef. Come cambia questa legge se suppongo che sugli assi ci fossero i logaritmi in base 107

Esercizio 7. Assi logaritmici

[ | | | I
1 10 100 1000 10000

asse logaritmico

Nel grafico & disegnato una asse orizzontale logaritmico.
Disegna i punti 5, 50, 500.
Disegna il punto /10 =~ 3.2.

Dove andrebbe disegnato lo 0 in questo grafico?

Puo essere utile osservare il grafico della funzione log, il logaritmo in base 10.
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La soluzione di questo esercizio € parzialmente nel grafico seguente

| T TTTTI T TTTTIM T TTTTI T TTTTm
1 10 100 1000 10000

I segna-numeri tra 1 e 10 corrispondono ai valori 2, 3, ... 9, quelli tra 10 e 100 corrispondono
ai valori 20, 30, ...90, etc.

FEsercizio 8. Metabolismo

Negli anni 30 il biologo M. Kleiber studio la relazione tra il metabolismo basale dei carnivori e il loro
peso. In un grafico log-log, in base 10, il valore del metabolismo m espresso in ml di Oy emessi in
un’ora, € legato al peso p espresso in grammi, da una legge lineare di intercetta 0.6 e di coefficiente
angolare 0.7.

Scrivere la legge M (p).

FEsercizio 9. Cervelli

Supponendo che il peso C del cervello dei primati, espresso in grammi, sia legato con la seguente
legge a potenza al peso P dell’animale, espresso in kg:

C =60 x p/*
Calcola i parametri della legge lineare che vedresti in un grafico log-log in base 10.

Come cambia la legge se misuri P in grammi? E come cambia la retta?
Come cambia la legge se misuri C' in chilogrammi? E come cambia la retta?
Come cambia la retta se il grafico log-log ¢ in base e?

Esercizio 10. Effetti delle PM2.5
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Ho preso la figura che segue da un articolo sugli effetti della presenza di PM2.5 sull’intensita della
radiazione solare Rg a banda larga sul cielo di Pechino.

900 T T T T T T T T T T T T T T

y=-118.3*In(x)+1003.6 |
R*=0.81

800 -
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s .
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PM2.5(ug m*)

Sono mostrati i dati e la curva che li approssima meglio (vedremo in seguito come si costruisce).

Quale asse dovrebbe essere logaritmico per vedere una retta?

Nella figura seguente sono mostrati i dati medi annui di Rg e PM2.5.

Si noti che le due leggi lineari scritte in figura non sembrano coerenti con le scale. Si scrivano le leggi
lineari (approssimate) che esprimono Rg in funzione dell’anno A, e PM2.5 in funzione dell’anno A.
(Suggerimento: si utilizzi I'espressione per la retta tra due punti notando che sulla retta rossa Rg
vale circa 370 nel 2005, e circa 350 nel 210; si proceda analogamente per PM2.5).

E coerente questa immagine con i dati dell’immagine precedente? Quale sarebbe l’espressione di
Rg in funzione di PM2.5 che si dovrebbe dedurre da questa figura?
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1.5 Esercizi di richiamo

Esercizio 11. Legg:i linear:

a) Sia (2—1r)/3 = (3s+5)/7. Esprimi r in funzione di s, e esprimi s in funzione di r.

b) Se (p+a)/b= (b—2q)/a
Come si esprime ¢ in funzione di p?

Come si esprime p in funzione di ¢?
¢) Trova p in funzione di ¢ sapendo che se p vale 2, ¢ vale 3, se p vale 3, ¢ vale 2.
d) Trova p in funzione di ¢ sapendo che se p vale p, ¢ vale g, se p vale pg, g vale qp.
e) Supponi che p =2¢+ 3 e s =5¢ — 1. Esprimi p in funzione di ¢, ed esprimi ¢ in funzione di p.
f) Supponi che Ap/Aq = —2, e p vale 3 se ¢ vale 4. Scrivi p in funzione di q.

g) Un variazione di un grado Celsius corrisponde a una variazione di 1.8 gradi Fahreneit. Inoltre la
temperatura di congelamento dell’acqua, di 0 gradi Celsius, ¢ pari a 32 gradi Fahreneit. Scrivi
le formule di trasformazione da gradi Celsisus a Fahreneit e viceversa.

h) Il peso di un neonato aumenta di circa 30 grammi al giorno. Determina il peso in funzione del
tempo, sapendo che nel suo settimo giorno di vita il suo peso é di 3.79kg. Quanto pesava il
terzo giorno? Quanto pesera il decimo? Quando superera i 4 kg?

Esercizio 12. Proprieta degli esponenziali

Rendi piu “semplice” le seguenti espressioni:
a) 103 x 10° =

b) 30 =

c) 61 =

d) 27! =

e) 2.5 x 2571 =
f) 42° =

g) (47’ =

h) 52 x573/571 =
i) (ab?) =

j) (a/t*)~t =

Esercizio 13. Proprieta dei logaritmsi
a) log(ab) =
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b) loga® =

c) logn10 =

d) log,, 1073 =

e) 1081014 =

f) 100810 14* —

g) 104xMog1014 =

h) logl =

i) log10* =

j) In10* =

k) Esprimi un numero a in funzione di 10°.
1) Esprimi un numero a in funzione di e®.

m) Esprimi un numero a > 0 in funzione di Ina.

Esercizio 14.

Considera la legge di crescita esponenziale
N(t) = 1000 x 1.1*/3.

Riscrivila utilizzando la base e; riscrivila utilizzando la base 10, riscrivila utilizzando la base 2.
Determina in quanto tempo N aumenta del 50%, in quanto tempo raddoppia, e in quanto tempo
decuplica.

In quanto tempo N (¢) diventa 10°?
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Capitolo 2

Modelli di evoluzione

In questo capitolo illustrero i concetti di base della modellistica matematica, attraverso alcuni
esempi significativi.
Ritorniamo al semplice modello della duplicazione batterica. Il modello consiste in una
legge, espressa in forma matematica, che permette di determinare il futuro, conoscendo
il presente. Nel caso della duplicazione batterica, I’assunzione del modello é che

. Se conosciamo la numerosita N all’ora ¢, che indicheremo
come N (t) (il “presente”) possiamo determinare la numerosita all’ora successiva, cioé N (t+1)
(il “futuro”), mediante la formula

N(t+1) = 2N(t)

Puntualizzo: in questa “legge di aggiornamento” non c’¢ scritto il valore della numerosita
N, c’¢ solo la regola per determinare il futuro conoscendo il presente. Per conoscere concre-
tamente N (t) ¢ necessario conoscere il dato iniziale, per esempio la numerosita al tempo
t = 0, che chiamo N,.

Tutte le informazioni sul sistema sono dunque calcolabili a partire da queste due informazioni:

N(t+1) = 2N(1)
N(0) = Ny

(in matematica questo sistema prende il nome di “problema ai dati iniziali”). Infatti se
vogliamo conoscere N (4) basta raddoppiare per 4 volte il valore di Ny, cioé¢ N(4) = 2Ny =
16N,. E importante notare che il “dato iniziale” non deve necessariamente essere quello al
tempo 0. Per esempio se fissiamo N(10) = 10 000 siamo comunque in grado di prevedere
N(12) = 40 000, e siamo in grado di ricostruire il passato. Per esempio, per calcolare
N(8) dovremo dividere due volte per due N(8) = 10 000/4 = 2500.

Chiameremo soluzione la funzione N(t). Dalla legge che governa il modello siamo in grado
di trovare una semplice espressione matematica per N (t)

N(t) - Nozt
Se invece fissiamo il dato iniziale Ny al tempo ¢y, la legge diventa

N(t) — N02t7t0

Esercizio 15. Modello lineare
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Un aspetto quantitativo F' di un fenomeno naturale si evolve con velocita di variazione costante a.
Ipotizzando che F' valga Fjy al tempo t(, determinare I’espressione di F'(t).

Riposta: F(t) = Fy+a(t —to) infatti ' al tempo ¢ deve essere uguale a Fy piu la variazione,
che é proporzionale al tempo passato t — ty, con coefficiente a.

Modelli alle differenze e modelli differenziali

I due esempi precedenti sono formulati in modo lievemente differente: per il modello di
duplicazione ho fornito la regola per calcolare I’avanzamento nel tempo, per il modello lineare
ho dato un valore alla velocita di variazione. Il modo piu utile di formulare un modello é
proprio quest’ultimo.

Torniamo alla duplicazione: invece di scrivere N(t + 1) = 2N (t) posso scrivere

N(t+1) — N(t) = N(t)

a sinistra compare la differenza tra futuro e presente, e a destra c’é solo il presente. Noto
anche che N(t + 1) — N(¢) ¢ la velocita media di variazione in un’ora. Dunque anche il
modello di duplicazione si puo formulare in termini di velocita di variazione.

Il vantaggio di questo modo di fare é che ci consente di prendere in considerazione anche le
velocita istantanee.

Un modello differenziale ¢ un modello in cui viene specificata la velocita istantanea di
variazione in funzione dello stato presente. Per esempio il modello esponenziale é governato
dalla legge

N'(t) = aN(t)

N(to) = Ny

Abbiamo gia trovato la soluzione per un problema di questo tipo: le funzioni che verificano
N’ = aN sono solo le funzioni N(t) = ce*, con ¢ costante arbitraria. Imponendo il dato
iniziale

Ny = N(tg) = ce®

e dunque ¢ = Nye~*°_ e infine si ottiene
N(t) = Nyet=to),

Questo tipo di modello descrive in particolare la crescita malthusiana delle popolazioni: si
fissa un intervallo di tempo di riferimento, per esempio un anno, si assume costante il tasso di
natalita n =numero di nati/ numerosita della popolazione, e il tasso di mortalita m =numero
di morti / numerosita. Dunque

N(t+1) = N(t) = (n — m)N(t)

Da questa legge si scopre che N(t) = N(0)(1+n—m)! = N(0)e!(1=7=m) " (questo passaggio
I'ho gia fatto nel primo paragrafo). Derivando in ¢ si ottiene il modello differenziale con o =
In(1+n—m) Se o > 0 (cioé se il tasso di natalita supera quello di mortalita) la popolazione
cresce esponenzialmente. Se accade il contrario, la popolazione decresce esponenzialmente.
Se n = m, il modello prevede la costanza della numerosita popolazione.
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Un altro fenomeno naturale governato da questo modello ¢ il decadimento esponenziale delle
sostanze radioattive: in numero di atomi di un isotopo radioattivo che decadono in una
unita di tempo é proporzionale al numero complessivo di atomi. In altri termini, il tasso di
“mortalitd” degli atomi é costante. Piul in generale, il modo piu semplice e ragionevole di
modellizzare quantitativamente fenomeni di mortalita o pia in generale di trasformazione é
assumere tassi costanti. Per esempio, nei modelli di crescita tumorale si assume che il tasso
di mortalita naturale delle cellule sia costante, nei modelli di epidemia si assume che il tasso
di guarigione dei malati sia costante (che vuol dire che il numero di malati che guarisce in
un intervallo di tempo fissato ¢ proporzionale al numero di malati).

Faccio un esempio concreto. Il carbonio-14 si dimezza in circa 5730 anni, dunque se M (t) =
M (0)27/5730 (1a massa subisce ¢/5730 dimezzamenti in ¢ anni. Riscrivendola come legge
esponenziale in base e: M(t) = M(0)e™, con a = In5730 = 8.65, e quindi

M'(t) = —aM(t)

é la massa al tempo t.

Fin’ora abbiamo analizzato tre leggi di variazione: a velocita costante, a tasso di crescita
costante (natalita), a tasso di decrescita costante (mortalita). Ci sono molte situazioni
interessanti in cui possono essere coinvolti piu fattori (gia nel modello di Malthus abbiamo
considerato natalita e mortalita).

Per esempio ci possiamo chiedere come varia la quantita di carbonio 14 nell’atmosfera, tenen-
do presente che si forma per 'interazione tra i raggi cosmici e 'atmosfera (per la precisione
con l'azoto-14). Assumiamo l'ipotesi ragionevole che I’azione dei raggi cosmici sia costante,
e che la quantita di azoto-14 nell’atmosfera sia costante. Trascuriamo per il momento che il
14C decade: ci sarebbe un aumento della massa a velocita costante dovuto ai raggio cosmici.
Indichiamo con ¢ questa velocita costante di accrescimento della massa. Complessivamente,
la velocita di variazione di M (t) avra dunque due contributi: uno di decadimento pari a
—alM , 'altro di accrescimento a velocita costante, pari a ¢. Quindi

M'(t) = —aM(t) +q

n iqu i i i i puo trovar uzion icita, m r or
Anche di questa equazione differenziale s 0 trovare la soluzione esplicita, ma per ora
preferisco provare a studiare I’equazione senza risolverla.

Nel seguente grafico sono riportati in ascissa i possibili valori di M, e in ordinata i corrispon-
denti valori di M’, calcolati con la legge —aM + q. Poiché si tratta di una legge lineare, il
grafico & una retta, con intercetta ¢, e con intersezione dell’asse nel punto M = ¢/a.
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Se M ¢ nell’intervallo (0, q/a) = (0, M), il valore della funzione ¢ positivo, dunque la velocita
di crescita ¢ positiva e quindi M deve aumentare. Al contrario se M > M, la velocita di
crescita & negativa, e dunque M deve diminuire. Se invece M = M = ¢/a la velocita & zero,
dunque non ci sara variazione. Questi punto é un punti di equilibrio. Si noti che é anche
attrattivo, perché se si parte da un valore di M di poco a destra o di poco a sinistra, M
si avvicina e tende a M. Diremo anche che questo equilibrio é stabile, proprio perché se si
parte a li vicino, M non si puo allontanare.

Cosa vediamo in natura? In genere vediamo gli equilibri stabili (e pin in particolare quelli
attrattivi). Per esempio, non riuscite a mettere facilmente una penna in verticale sulla punta,
perché é un equilibrio instabile. In questo esempio del carbonio, vediamo una concentra-
zione di "*C' costante nell’atmosfera. A che serve dunque dunque il modello? Supponiamo,
come € accaduto in passato, che ci sia un consistente aumento dell’attivita solare per un
tempo lungo qualche anno. In tal caso aumentano i raggi cosmici, il coefficiente ¢ aumen-
ta, I'equilibrio M cambia, e il modello predice quantitativamente come M (t) raggiunge il
nuovo equilibrio con il passare del tempo.

Per completare questo esempio, la soluzione esplicita del modello ¢&

M(t) = Moe™™ + M(1 —e™ ™)

Nel grafico seguente sono rappresentate le soluzioni in funzione del tempo, al variare del
dato iniziale M. Questa volta sull’asse orizzontale c’¢ il tempo, su quello verticale il valore
di M(t), dunque le curve che vedete disegnate sono le possibili soluzioni in funzione del
tempo. Il dato iniziale di ogni curva si legge sull’ordinate dell’asse verticale.
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In arancione ¢ disegnata la retta orizzontale che rappresenta la soluzione stazionaria.

Un’ultima importante osservazione. Quando siamo all’equilibrio, matematicamente tutte le
funzioni in gioco sono costanti: in questo caso M’ =0 e —aM + q = 0, cioé M = q/a. Dal
punto di vista del fenomeno, perd 1'equilibrio ¢ dinamico: il *C viene creato con velocita
q e si autodistrugge con velocita aM. 11 fatto che la velocita di creazione sia uguale a quella
di distruzione caratterizza la situazione di equilibrio.

2.1 Modelli a compartimenti

Il modello che abbiamo discusso per il **C' ¢ un esempio semplice di modello a comparti-
menti, che descrive il flusso di una certa sostanza in zone differenti o in ambienti differenti.
Per essere piul chiaro, nel modello considerato la variabile M () ¢ la massa di carbonio “C
nell’atmosfera, che lasciata a se stessa decade con tasso costante, perd interagisce con un
altro compartimento (non fisico, ma concettuale) che chiamero genericamente “esterno”, in
cui invece il *C viene prodotto.

Consideriamo un altro esempio un po’ piu complesso, la diffusione del mercurio nei orga-
nismi, per esempio pesci. (questo e alcuni degli esempi sono ispirati da J.H. Matis, T.E.
Wehrly Compartmental Models of Ecological and Environmental Systems in G.P. Patil, C.R.
Rao Environmantal Statitics handobbok of statistic 12, North-Holland 1994). Si puo
immaginare di descrivere questo fenomeno con tre compartimenti:

e l'esterno (qui I'acqua), in cui si pud pensare ci sia una quantita costante di mercurio

e il compartimento 1, cioé i tessuti dell’organismo che assorbono il mercurio dall’estero
(apparato digerente, sangue) e che in parte lo rilasciano all’esterno, e in parte a tessuti
pit “interni”’, per esempio le ossa

e il compartimento 2, cioé i tessuti interni, che non interagiscono con ’esterno, ma solo
con il compartimento 1
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Proviamo a scrivere in astratto il modello differenziale che governa questo fenomeno. Indiche-
rd con z1(t) la concentrazione di mercurio nel compartimento 1, con x5(t) la concentrazione
di mercurio nel compartimento 2.

La velocita di variazione di x; avra

e un contributo positivo costante dovuto all’esterno, che chiamerd s; (s da sorgente);

e un contributo di espulsione del mercurio verso ’esterno che sara pero proporzionale
alla quantita di mercurio presente, e dunque sara della forma —a;z;

e un contributo di trasferimento al compartimento 2, anche questo proporzionale, del
tlpO —Qa1271

e un contributo di trasferimenti dal compartimento 2, che sara proporzionale a x, e
dunque del tipo as 2o

Si noti la scelta della notazione: a; ¢ il coefficiente relativo all’interazione con ’esterno, ais
quello relativo al contributo del primo compartimento 7' verso il secondo compartimento, e
a1 viceversa. Questi numeri non sono necessariamente uguali.
La velocita di variazione di x5 si determina ragionando nello stesso modo, perd manca il
contributo di provenienza dall’esterno (ss = 0), e manca il contributo di trasferimento verso
I'esterno (ay = 0).
In definitiva

LL’ll = —(CLl + alg)xl “+ ag1x2 + 81

.I/Q +a1221 — A21%2

Si noti che poiché il mercurio non viene distrutto nel trasferimento, il termine di crescita del
mercurio nel compartimento 1, dovuto al trasferimento dal compartimento 2, deve bilanciare
esattamente il contributo di decrescita del mercurio nel compartimento 2, dovuto al trasfe-
rimento verso il compartimento 1. Lo stesso vale per il trasferimento dal compartimento 2
al compartimento 1.

Questo sistema é piu complesso rispetto all’esempio precedente, perché coinvolge due fun-
zioni. E ancora relativamente semplice perché ¢ un modello con velocita di variazioni lineari
(infatti & ancora matematicamente esplicitamente risolubile).

Vediamo se ci sono equilibri, che indicherd con z; e Zs. Se il sistema ¢ in equilibrio, entrambe
le velocita di variazione z e x4, devono essere zero. Dunque i secondi membri devono essere
nulli all’equilibrio, cioe

— (a1 + alg)fl + aglfz + S1 — 0

121 — 2173 =0

Guardiamo prima la seconda equazione. Affinché sia verificata, deve accadere
1271 = 2172

Questa relazione ha un evidente significato: all’equilibrio, la velocita con cui il mercurio passa
da 1 a 2, deve essere identica alla velocita con cui il mercurio passa da 2 a 1. Ricaviamo
dunque Zy = Tya19/as;. Inserendo questo valore nella prima equazione otteniamo

—(a1 + alg)fl + algig + 81 = 0
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cioé

—a1%1 + 81 = 0, da cui T = 51/(11

Anche questa uguaglianza ha un chiaro significato: poiché all’equilibrio il flusso netto di
mercurio tra i compartimenti 1 e 2 ¢ nullo, il valore di equilibrio della concentrazione di
mercurio nel compartimento 1 dipende solo dall’interazione con I’esterno. Infatti é lo stesso
equilibrio che si otterrebbe per il solo bilancio di z; dato da | = —a;x; + s1.

Riassumendo, abbiamo trovato un solo equilibrio

Ty = s1/a1, Ty = (s1012)/(a1as1).

Esistono metodi matematici per controllare la stabilita e 'attrattivita di questo equilibrio,
ma non ne parlerdo. Mi limito a far vedere il grafico di diverse soluzioni, che si ottengono
cambiando il dato iniziale.

Attenzione: questo grafico é diverso dai due precedenti, perché viene rappresentato il piano
delle due variabili z; e x2, Non potendo disegnare il tempo (si potrebbe fare con la terza
dimensione, ma non si otterrebbe un grafico piu leggibile), per comprendere I’'andamento
temporale ho disegnato delle frecce.

x2

x1

Questi invece sono i grafici di x;(t) e z2(t) con dato iniziale z1(0) = 0, z2(0) = 0. In
orizzontale i rispettivi valori di equilibrio.
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Esercizio 16. Idrologia delle paludi di Okenfenkee

Lo studio del flusso delle acque in una regione paludosa viene diviso in 4 compartimenti:

e A - 'altopiano, su cui si accumulano le acque piovane, e che puo riceve acque di risalita dal
sostrato roccioso;

e R - il sottosuolo roccioso dell’altopiano, che riceve acque solo dall’altopiano

e P - la superficie della palude, che riceve acque dall’altopiano, dal sostrato roccioso, e dal
sostrato sabbioso sotto la palude

e S - il sostrato sabbioso sotto la palude, che riceve acque dalla palude e dal sostrato roccioso
dell’altopiano.

Scrivere un ragionevole sistema differenziale per il flusso delle acque in questo sistema, scegliendo
quali coefficienti sono nulli.

2.2 Il modello di Verhulst

In natura non si vedono frequentemente crescite malthusiane di popolazioni. Uno dei casi pit
evidenti & quello della popolazione umana: a meno di guerre e pestilenze, in epoca storica
¢ in espansione esponenziale. Altri casi si osservano nel caso di colonizzazioni di habitat
favorevoli. Per esempio si pensi alla diffusione esponenziale di alcuni virus di altri animali
che con mutazioni favorevoli si sono adattai agli ospiti umani. Oppure si pensi all’espansione
di popolazioni animali che colonizzano un’isola vulcanica di recente formazione, o ancora
alla crescita esponenziale di una “specie aliena” che I'uomo introduce in zone lontane da
quelle originarie (una storia estremamente interessante ¢ quella dei conigli in Australia, e
delle ulteriori specie aliene introdotte per tentare di controllarne la proliferazione).

Il motivo per cui si osservano raramente crescite esponenziali é che esiste un meccanismo che
fa crescere il tasso di mortalita (o decrescere il tasso di natalita) se la popolazione é troppo
numerosa e diventa difficile I'accesso alle risorse.
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La prima modifica del modello di Malthus che tiene conto di questo effetto & dovuta a

Verhulst:
N
N = 1—-— | N
(1-%)

N(0) = N,

con (3 e K parametri positivi. Questa volta il tasso di crescita istantaneo N’/N non ¢ costante

ma vale
N
N'/N = 1—-—
/ ﬁ( K)

Vediamo di capire come si comporta questo sistema, aiutandoci con un grafico, in cui in
ascissa consideriamo i possibili valori di N, e in ordinata i corrispondenti valori di N/, come
descritti dalla legge.

Nl

La funzione di N che compare al secondo membro ¢ una parabola, che passa per l'origine,
ha la concavita rivolta verso il basso, e si annulla in due punti: N =0e N = K.

Se N ¢ nell'intervallo (0, K), il valore della funzione é positivo, dunque la velocita di crescita
é positiva e quindi N deve aumentare. Al contrario se N > K, la velocita di crescita é
negativa, e dunque N deve diminuire. Se invece N =0 o N = K la velocita é zero, dunque
non ci sara variazione. Questi due punti sono punti di equilibrio.

e N = 0 é un equilibrio instabile, perché appena ci si sposta un po’ N comincia a
crescere

e N = K ¢ un equilibrio stabile, perché sia se ci si sposta di poco a destra, sia se ci si
sposta i poco a sinistra, N si riavvicina a K.

Per questo sistema si puo scrivere anche 'espressione esplicita della soluzione, che é

B KN,
~ Np+ (K — Ny)ePt

N(t)

Naturalmente il grafico di questa funzione dipende dal valore di Ny Lo rappresento nel
prossimo grafico, in cui stavolta sull’asse orizzontale c’¢ il tempo, su quello verticale c¢’é
N(t).
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Da questo grafico si possono trarre le stesse conclusioni che abbiamo fatto studiando il grafico
di N’ in funzione di N. Se Ny = 0 o se Ny = K il sistema ¢ in equilibrio. Se N, ¢ tra 0,
e K, N(t) cresce (e se ¢ vicino a 0 cresce esponenzialmente), poi la curva si piega e tende a
K per t — +oo. Se invece Ny > K, N(t) decresce e tende a K per t — +00.

2.3 La funzione logistica

Studiando per ¢ < 0 l'espressione di N(t), si vede che N(t) tende a 0 per t — —o0. Questa
funzione N(t) dunque parte da 0 a —oo e raggiunge K a 400, con una forma quasi a S. Fa
parte delle cosiddette funzioni logistiche o anche sigmoidi, che hanno una grande importanza
nella descrizione di vari fenomeni.

L’espressione base di queste funzioni é

che per unisce 0 (per z — —0), a 1 (per  — 4+00), e vale 1/2 per x = 0. Inoltre ha grafico
simmetrico rispetto al punto (0,1/2).

30



o //
o,.,/

Aggiungiamo ora un parametro, e consideriamo

1

folw) =1

con [ numero positivo. I grafici di queste funzioni sono tutti uguali, a parte il riscalamento
nella variabile x. Per vedere il valore f(1), basta mettere x = 1. Ma per vedere il valore
f(1) usando la funzione f3, & necessario porre Sz = 1, cioé¢ x = 1/f. In pratica dobbiamo
rimpicciolire la variabile x di un fattore .

Nella figura seguente sono riportati i grafici per § da 1 a 5. Come si vede, al crescere di f3,
il grafico si schiaccia su meta delle rette orizzontali.

1

;—
.,

Nel limite 8 — 400, si ottiene una funzione che in matematica si chiama 19, definita in questo
modo

Osex <0
Hx)=<q1/2sex=0
lsex >0

Questa funzione é il prototipo della modellizzazione dei fenomeni a soglia, per esempio
'attivazione di un neurone. Se l'intensita dell’input (cio¢ del segnale di ingressi) ¢ inferiore
al valore di soglia, in questo caso 0, il neurone non emette nulla, appena diventa superiore al
valore di soglia, il neurone emette il suo segnale, indipendentemente dall’intensita dell’input.
Si puo pensare alla famiglia di funzioni fg, con 8 grande, come a una approssimazione
morbida della funzione di soglia ¥): il neurone emette sempre un po’ di segnale, ma si vede
una sensibile differenza solo al passaggio del valore di soglia 0.

Vale la pena fare qualche osservazione sulla simmetria. Il grafico della funzione fz € evi-
dentemente simmetrica rispetto al punto (0,1/2). Cerchiamo una prova algebrica di questo
fatto valutando la differenza tra la funzione e 1/2:

1 2—-1-eP 11-ef"

Jolw) =5 = 21+e Py  21+eb"
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Moltiplichiamo numeratore e denominatore dell’ultima frazione per e?*/2. Si ottiene

11 1ef/2 b2

s e 9231
T =5 =515 Grom (2.3.1)

A questo punto é facile notare che se scambiamo x con —z 'ultima frazione cambia solo di
segno, e dunque fz(x) — % cambia solo di segno. Questa ¢ appunto la simmetria rispetto al
punto (0,1/2).

E semplice costruire una funzione a soglia che invece di andare da 0 a 1, va da s, valore
sinistro, a d, valore destro. Ragioniamo in questo modo: 9 copre una variazione ampia
1 =1 — 0, mentre la funzione che cerchiamo deve coprire una variazione d — s. La funzione
(d — s)Y(z) fa esattamente questo, ma va da 0 a d — s. Per ottenere a sinistra il valore s
basta sommarlo. La funzione cercata ¢

s+ (d—s)d(x).
Per esercizio, si provi che

d + se~Ple=0)
sHd=)sle = 20) = T gy

é la versione morbida della funzione di soglia che unisce s a d, con la soglia in zy. Usando la
(2.3.1)), si ottiene 'espressione alternativa

s+d d—s efle=z0)/2 _ o=B(z—20)/2
2 + 2 eﬁ(m—wo)/2 + e—B(m—zo)/2 :

da cui si vede la simmetria rispetto al punto (zg, (s + d)/2).
Piu in generale, una funzione logistica ha ’aspetto

d 4 se~Pl@=w0)
90) = e

In questo caso, il valore di soglia ¢ ancora z, la funzione va dal valore s/b a —oo al valore

d/a a +00. Se a = b la funzione ¢é simmetrica rispetto a (z o)) e si riduce all’espressione
0, 0

precedente, dividendo d e s per a; altrimenti la funzione non é simmetrica.

2.4 Cinetica chimica

In questo esempio vedremo per la prima volta come si pud modellizzare 'interazione tra
due variabili che descrivono un fenomeno. Negli esempi precedenti, o avevamo a che fare
con un’unica variabile, oppure, nei modelli a compartimento, le diverse variabili rappresen-
tavano la quantitd o la concentrazione di una stessa grandezza, ma all’interno di diversi
compartimenti.

Supponiamo di sapere che é possibile la reazione chimica che unisce ’elemento X e I’elemento
Y per formare un composto XY. Le variabili del sistema sono le concentrazioni dei tre
elementi:

z=[X], y=[V], 2 = [XY]

La variazione della concentrazione di X avra due termini: uno di accrescimento, dovuto
al fatto che XY si decompone nei suoi elementi costitutivi. Come sempre modellizzeremo

32



questa velocita di decomposizione con un termine proporzionale alla concentrazione S[XY].
L’altro termine sara di decrescita, e sara dovuto al fatto che molecole di X e di Y si incontrano
e formano XY. Questo termine deve essere proporzionale a [X], infatti piu X c¢’¢, pin XY
si forma, ma deve anche essere proporzionale a [Y], per lo stesso motivo, dunque

[X] = —alX][Y] + BIXY]
A questo punto & semplice scrivere le altre equazioni, infatti anche [Y]| varia per gli stessi
motivi, e con la stessa legge, infine [XY] si crea a velocita o[ X]|[Y], e si distrugge a velocita
B[XY]. Riassumendo
[X] = —a[X][Y] + BIXY]
Y] = —a[X][Y] + BIXY]

[(XY] = o[X][Y] - BIXY]
Si noti che [X]'+[XY] = 0, cosi come [Y]' +[XY] = 0. Questo non deve sorprendere, perché
[X] 4 [XY] ¢ la somma della concentrazione di X libera, e di quella di X legata. Il totale,
che indichero con z, non puo cambiare nel tempo. Lo stesso accade per [Y] + [XY] =y che
¢ la concentrazione totale di Y. E facile vedere che 'equilibrio si ottiene per

alX][Y] = pIXY]
Riscrivendo tutto in funzione di [XY]:
afz = [XY])(y - [XY]) = BIXY]

Per esercizio, si risolva questa equazione di secondo grado, mostrando che c¢’¢ una sola so-
luzione positiva minore di x e di y, che é 'unica accettabile. Anche questo equilibrio é di-
namico: anche se le concentrazioni sono costanti, avvengono continuamente trasformazioni,
ma perfettamente bilanciate.

Si osservi infine che usando i valori costanti = e y, si puo riscrivere la terza equazione nella
sola variabile [XY]:

(XY] = a(z - [XY])(y — [XY]) - B[XY]

Per esercizio si provi che questo sistema ha due equilibri, che quello minore é stabile e

attrattivo, che quello maggiore ¢ instabile, e che ¢ fisicamente da scartare perché prevede
[ XY superiore al totale di X e di Y.

Ripeto: il motivo di questo esempio é di fare la conoscenza di termini di interazione di tipo
prodotto, potete trascurare la descrizione degli equilibri in questo esempio.

2.5 Interazioni di tipo Michaelis-Menten

Un’interessante variazione del modello precedente si ottiene quando si analizzano reazioni
in presenza di enzimi. Stavolta le variabili saranno [S], la concentrazione di sostrato, [E],
la concentrazione di enzima, il composto SE, che pero si trasforma nel prodotto finale P e
libera ’enzima F.
Procedendo come nell’esempio precedente, e assumendo che SE in parte decada in S+ F, e
in parte in P + E, si ottiene facilmente il sistema

[SE] = a[S][E] — (6 +7)[SE]
[S)" = —a[S][E] + BISE]
[E]" = —alS][E] + (B + 7)[SE]
[P]" = ~[SE]
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Si noti la differenza tra I’equazione per [S] e quella per [E], dovuta a fatto che il composto
[SE] si trasforma sia in S ed F, siain S e P. Inoltre ¢ utile notare che la quantita [E]+[SE]
é pari alla concentrazione totale dell’enzima, che indichero con e e che non puo cambiare nel
tempo, come si vede sommando le due corrispondenti equazioni.

Cerchiamo gli equilibri. Guardando I’equazione per [P] si capisce che deve essere [SE] = 0,
cioé non deve esserci composto. Inserendo questa condizione nelle altre equazioni si ottiene
che per l'equilibrio deve valere [S][E] = 0, quindi o [E] = 0, oppure [S] = 0. Si noti che
[SE]+|E] = e ¢ concentrazione totale di enzima, perché ¢ la somma di quello libero e di quello
legato, mentre [SE] 4 [S] ¢ la concentrazione totale di sostrato. Possiamo imporre [E] = 0
solo imponendo che non ci sia enzima, caso che escludiamo in quanto non interessante. Se
invece imponiamo [S] = 0, stiamo imponendo che non ci sia sostrato. Il valore di [E] = e
invece ¢ fissato, e [P] puo essere qualunque. Si noti che questi equilibri non sono dinamici:
tutti i singoli termini sono nulli. Si noti anche che fuori dall’equilibrio [P] cresce, ma non
puo crescere all'infinito. Tendera dunque a una costante, e dunque [SE] tendera a 0, quindi
anche [S][E] deve tendere a 0: in pratica tutto il sostrato viene trasformato in prodotto.
Una notevole semplificazione di questo modello si ottiene se si ipotizza che la reazione avvenga
con E in equilibrio dinamico, cioé¢

alSJ[E] = (B +7)[SE]

Poiché [E] = [SE] — e, usando queste due equazioni si ottiene [SE] in funzione di [S]:
aelS]
SE)= ———
ISE] B+ v+ aelS]

Notando che
[S]" = —a[S][E] + BISE] = —a[S][E] + (8 + 7)[SE] — v[SE] = —7[SE]

si ottiene infine un sistema in cui non compare pit il termine che coinvolge I’enzima ma solo
il bilancio tra [S] e [P]:

,_ avelS]

15T = B+ v+ aelS]
,_ avelS]

Py = B+ v+ aelS]

Questo sistema predice che [S] decresce fino a 0, e in corrispondenza [P] cresce fino all’esau-
rimento del sostrato. Si noti che la decrescita di [S] non ¢ esponenziale: se [S] & grande, la
produzione di [P] avviene quasi a velocita costante 7, per poi rallentare e diventare espo-
nenziale quando [S] diventa piccolo. Questo tipo di termine per la velocita di variazione ¢ si
chiama proprio Michaelis-Menten, e racchiude in sé la parte di interazione con I’enzima, che
non compare piu nell’equazione.

Riassumendo: un termini di tipo Michaelis-Menten ¢ un termine di decrescita (o di crescita)

per una quantita z del tipo
x

Q@
a+x
con a parametro positivo. Consideriamo dunque

’ T
r =«

a+x
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che corrisponde ad assumere che il tasso istantaneo di variazione di z sia 2’/x = «/(a + x),
dunque decrescente in x. Se x & piccolo, il tasso vale circa a/a, e dunque il modello si riduce
al modello esponenziale (decrescente o crescente a seconda del segno di ). Se z ¢ grande,
2/ & praticamente « cio¢ ¢’¢ una sorgente costante se a & positivo, ¢ un prelievo costante se
a € negativo.

Questo tipo di termine puo essere generalizzato come segue:

{L‘k

a—
ak + zk

con k > 1. Anche in questo caso per x grande il termine é praticamente «, quindi d& una
sorgente o un prelievo costanti a seconda del segno di a. Invece, quando x é piccolo, il
termine ¢ praticamente

Per capire come si comporta questo termine consideriamo il corrispondente tasso di variazione
2 [z = axtt/ak,

che, per £ > 1, tende a 0 se x — 0. Dunque questo termine da una crescita o decrescita
molto lenta se x é piccolo. In particolare, per &« = —1 con dato iniziale x( risulta

x(t)

a 1+t$€07

che va a zero come 1/¢, molto piu lentamente dell’esponenziale negativo.
In sintesi, il termine di Michaelis - Menten generalizzato ¢ un termine con tasso di variazione
che tende a 0 per x piccolo, e velocita di variazione costante per x grande.

2.6 Il modello SIR

I1 modello SIR ¢ il modello di base per ’evoluzione di un’epidemia “rapida”’, cioé che si
evolva in tempi abbastanza brevi per non dover considerare nascite e morti naturali nella
popolazione (al contrario per esempio dell’epidemie di HIV che é in corso da vari decenni).
Inoltre si basa sull’ipotesi fondamentale che i guariti non si possano ricontagiare. Infine,
I’applicazione di questo modello va limitata ai casi di epidemica che riguarda un solo ospite,
e dunque ¢é per esempio inadatto allo studio della diffusione della malaria, che si scambia tra
uomo e zanzara.

Le variabili sono: S, il numero di suscettibili, cioé¢ degli individui che non si sono ammalati;
I il numero di persone infette e dunque contagiose, R, il numero di guariti (“rimossi”). Alla
luce degli esempi precedenti dovrebbe essere chiaro perché il modello ha questa espressione:

S = —aSI
I'=aSI —bl = (aS —b)I
R =0bI

Si nota subito che ci sono infiniti punti di equilibrio: se I = 0, tutte le variabili sono costanti
(assenza di epidemia). L’altra osservazione immediata che si puo fare é che S é una funzione
decrescente, R € una funzione crescente, mentre I decresce se e solo se aS — b é negativo.

35



Poiché S é decrescente, prima poi aS—b diventera negativo, e quindi I comincera a decrescere
e 'epidemia si estingue.
In una epidemia all’inizio del suo sviluppo, un ruolo cruciale ¢ giocato dal fattore a5y, — b,
dove Sy é la numerosita della popolazione che si pud ammalare. Si noti che aSy—b < 0 se e
solo se

CLSQ

R="22<1
b<

Pensando all’epidemia attualmente in corso, il tracciamento dei positivi permette di metterli
in isolamento, quindi ai fini del contagio questo equivale a considerarli rimossi. Dunque
un buon tracciamento con isolamento domiciliare dai familiari equivale ad aumentare il
coefficiente b, e dunque a fare scendere R. Il distanziamento sociale e I'uso delle mascherine
si traducono invece in una diminuzione di a, perché rendono improbabile la trasmissione del
virus. Infine, la vaccinazione serve a ridurre Sy. L’effetto di tutte queste misure & di ridurre
R. Se scende sotto 1, un’epidemia in corso si spegnera, se non & ancora iniziata non iniziera
nemmeno.

Faremo delle simulazioni numeriche su questo modello. Qui riporto solo un conto un po’
sofisticato, che spiega la cosiddetta immunita di gregge.
Si noti che la prima equazione si puo riscrivere come

%ln S =—al

e che dalla terza equazione si ottiene I = R’/b. Dunque

%(hlS-i-%R) —0

Sapere che questa quantita ¢ costante ¢ molto utile. Supponiamo di considerare un’epidemia
all’inizio, in cui R(0) =0, e S(0) = Sp. Allora

In S(¢) + %R(t) — log S,

cioe s
a
In—=+—-R(t)=0
S o (t)
Passando al limite per ¢ — +o0, S andra a Sy, cioe al valore finale di quelli che non si
sono ammalati, R andra a Ry, il valore finale degli ammalati. Indico con r = R;/Sy la
frazione complessiva di individui che si ammala. Pensano che il valore iniziale degli infetti

sia trascurabile, si puo scrivere

Sf—i—Rf:So—i—](O)%So

, € dunque
Sf/So =1—r
La relazione scritta sopra diventa dunque un’equazione per r:
a aS,
In(1—r)=— Ry = TOT = —Rr

Saper risolvere questa equazione ¢ importante perché ci permette di predire il numero totale
di malati in funzione di R. Questa equazione ha la soluzione r = 0 per qualunque R (in
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assenza di epidemia non ci sono malati). Pero per R > 1 appare un’altra soluzione, che
riporto nel grafico.

1.0

0.8

0.6

0.4

0.2

0.0

Come si vede, per R < 1 ¢’¢é solo la soluzione nulla e dunque 1’epidemia non si pud innescare.
Da R = 1 in poi la percentuale finale di contagiati cresce enormemente. Per esempio, se
R=101,r=2% se R=11,r =~ 18%, se R =2, r ~ 80%. Si capisce dunque la necessita
di tenere R piu basso possibile.

Questo grafico spiega l'effetto gregge delle campagne vaccinali: non solo la popolazione
vaccinata non si ammala, ma se R scende sotto 1 non si ammala nemmeno la frazione di
popolazione non vaccinata.

2.7 Il modello Lotka-Volterra - orbite periodiche

Il primo modello con interazione che descrivo é il modello preda-predatore, anche detto
modello di Lotka-Volterra, dal nome dei due scienziati che lo definirono, indipendentemente,
circa un secolo fa.

Le variabili sono z(t), il numero di predatori, e y(¢) il numero di prede. Senza prendere in
considerazione l'interazione tra queste specie, modellizziamo la velocita di cambiamento di
x con tasso costante di decrescita (non avendo accesso alle risorse i predatori si estinguono),
e la velocita di cambiamento di y con tasso costante di crescita (in assenza di limitazioni
dovute a predatori o scarsezza di risorse, il numero di prede € in crescita malthusiana).
Riflettiamo ora sull’effetto della presenza delle prede nel cambiamento del numero di pre-
datori. Deve trattarsi di un termine di crescita, che é ragionevole supporre proporzionale
al numero di prede: se raddoppio le prede, i predatori hanno a disposizione il doppio delle
risorse. Inoltre, sara proporzionale al numero di predatori: se le prede venissero in conti-
nuazione rimpiazzate e messe a disposizione dei predatori, anche la numerosita dei predatori
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dovrebbe una crescita malthusiana, e questo é fenomeno é equivalente alla proporzionalita
della velocita di crescita alla numerosita. Dunque modellizziamo la velocita di variazione del
numero di predatori x(t) con ’equazione

¥ = axy — bx

Il secondo termine é quello di decrescita a tasso costante, il primo é quello di crescita a tasso
crescente con il numero di prede. Allo stesso modo, modellizziamo la velocita di variazione
del numero di prede y(t) con I'equazione

¥ = —azy + fx

In questo caso, il secondo termine é quello di crescita a tasso costante, il primo é un termine
di decrescita con tasso che cresce con il numero di predatori.

Osservo che ¢’¢ un altro modo per spiegare la presenza dei termini zy: supponendo che le
y prede e gli x predatori si muovono casualmente in una stessa area, xy & proporzionale al
numero di incontri che possono avvenire nell’unita di tempo, dunque x ¢ proporzionale al
numero di predatori che una singola preda puo incontrare nell’'unita di tempo, e dunque il
tasso di estinzione delle prede deve essere proporzionale a .

Riassumendo

¥ =axy — br = (ay — b)x
y = —axy+ By = (—azx + By

 semplice trovare gli equilibri. Guardando la prima equazione, o # = 0, oppure y = § = b/a.
Nel primo caso, inserendo il valore z = 0 nella seconda equazione, si ottiene che anche y deve
essere 0. Se invece uso y = ¥, si ottiene che z =7 = f/a.

Come vedremo con le simulazioni, il comportamento del sistema ¢ il seguente:
e (z,y) = (0,0) ¢ un equilibrio instabile;
e (z,y) = (Z,y) & un equilibrio stabile ma non ¢é attrattivo;
e tutte le altre soluzioni sono periodiche

Commentiamo quest’ultima affermazione, riscrivendo il sistema in questo modo

x'zamy—bxza(y—é) =aly —79)z
a

Y = —axy+ Py = —« (I--)yz—a(ﬂf—w)y
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Osserviamo il grafico in figura, immaginando che il dato iniziale sia il punto (o, o), che
abbiamo scelto con xy > T e yy > ¥, cioé nella regione I. Le due equazioni ci dicono che
in questa regione x deve crescere e y deve diminuire. Questo andamento continuera fino a
quando y non scende sotto ¥, e la soluzione entra nella regione II. Qui y continua a decrescere,
ma anche x comincia a decrescere. Quando x passa 7, la soluzione entra nella regione III, in
cui y ricomincia a crescere. Infine, quanto y passa ¥, la soluzione entra nella regione IV, in
cui entrambe le variabili crescono. Quando x sorpassa Z, la soluzione rientra nella regione I,
e torna esattamente al punto di partenza.

E istruttivo osservare ’'andamento temporale della soluzione su un unico grafico. In ascissa
mettiamo il tempo, in ordinata i valori di entrambe le variabili, e disegniamo anche i valori
Z e y. Come si vede, il massimo e il minimo del numero di predatori (in arancione), si
raggiunge nell’istante in cui il numero di prede (in verde), passa il valore di equilibrio. Lo
stesso accade al contrario.
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Un altro fatto importante che si pud dimostrare con un po’ pitt di matematica, é che il valore
medio su un periodo della variabile x ¢ sempre esattamente , e quello della variabile y é
sempre esattamente ¢ (si tratta di un fenomeno che riguarda proprio questo modello, e non
¢ per niente generale). Dunque, anche se considero soluzioni che non siano di equilibrio, i
valori (z,y) indicano i valori medi delle due variabili.

A questo punto & molto interessante chiedersi come variano (Z,7), se cambiano i parametri.
Per esempio se aumenta il nutrimento a disposizione delle prede, cresce il parametro [,
favorendo in teoria le possibilita delle prede. Ricordando pero che
B __ b
T=— e y=—
a a

si ottiene che il numero medio di prede non cambia, mentre aumenta il numero di predatori.
Al contrario, una maggior difficolta di vita per i predatori (che si traduce in un aumento di b),
non ne cambia il numero, ma fa aumentare il numero delle prede, che possono prosperare pit
facilmente. Questo esempio suggerisce che le interazioni ecologiche posso essere complesse, e
vanno comprese prima di poter fare valutazioni chiare sul significato ambientale dell’aumento
o della diminuzione di una popolazione.
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2.8 Il modello di Ross per la malaria

Il modello di Ross per la diffusione della malaria ¢ interessante perché ci mostra altre possi-
bili modellizzazioni dell’interazione tra due specie, e perché suggerisce alcune riflessioni sul
controllo biologico.

E un modello per una epidemia che interessa due specie differenti, in cui la guarigione non
protegge dalla reinfezione. Ci sono due variabili in questo modello, il numero di zanzare
infette Z, il numero di umani infetti U. Ci sono un bel po’ di parametri:

e ¢ il numero medio di punture che una zanzara fa nell’'unita di tempo;

p la probabilita di trasmissione del plasmodio a un uomo sano per una puntura di una
zanzara infetta;

q la probabilita di trasmissione del plasmodio a una zanzara sana per una puntura a
un uomo infetto;

b il tasso di guarigione degli uomini;

B il tasso di guarigione delle zanzare;
e N il numero totale di umani;
e M il numero totale di zanzare

Il numero di contagiati umani cresce con una velocita che ha un contributo negativo bU, e un
contributo positivo che si determina in questo modo: le Z zanzare infette pungono aZ volte
nell'unita di tempo, quindi il numero medio di punture per singolo umano ¢ aZ/N. Poiché
gli umani sani sono N — U, il numero aZ/N (N — U) rappresenta il numero di punture subite
dagli umani sani nell’'unita di tempo. Moltiplicando questo valore per p (la probabilita di
trasmissione) si ottiene la prima equazione

A
"= apZ (N —U)—b
U apN( U)—-oU

Ragionando nello stesso modo, M — Z zanzare sane pungono a(M — Z)/N volte ogni uomo,

dunque

M—-Z
N

E pin utile riscrivere questo sistema per le variabili z = Z /M, u=U/N, che sono le frazioni
si zanzare e uomini infetti rispettivamente. Si ottiene facilmente

7' =aq

U-pZ

u' = apRz(1 —u) —bu
2 =aq(1 —2)u— Bz

dove R = M/N é il rapporto tra numero di zanzare e numero di umani,

Come sempre, si cercano gli equilibri. Aiutati dalla fenomenologia che stiamo descrivendo,
siamo portati a supporre che z = 0, v = 0 sia un punto di equilibrio, che corrisponde
all’assenza della malattia. Infatti se si sostituiscono questi valori si ottiene effettivamente
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che i membri di destra delle due equazioni sono nulli. Possiamo chiederci se ci sono altri
equilibri. Imponendo che siano nulli i membri di destra si ottiene il sistema

apRz(1 —u) = bu
aq(l — 2)u = Bz

Si puo risolvere con una piccola fatica che puo essere ridotta dividendo tutte e due le equazioni

per zu. Si ottiene
1 1
apR <— — 1) = b-
u z
1

aq(é—l)zﬁu

che ¢ facilmente risolubile nelle variabili 1/u e 1/z, essendo un sistema lineare. Si ottiene

( a2qu
w— b8 1 _ r—1
a?pqR aq r aq
b3 + B T B
a’pqR 1
e e s
a?pgR | apR apR
L s T b T+

2 . . . . . .
dove r = “22%  Niente panico: dobbiamo solo capire se questa soluzione esiste e che cosa

vuole dire. I numeri che abbiamo ottenuto sono sicuramente minori di 1, perd a seconda dei
valori dei parametri possono diventare negativi. I due numeratori sono identici, dunque u e
z sono positivi se e solo se

r>1

Come vedremo con una esplorazione numerica, se questa soluzione esiste, € stabile e attrat-
tiva, mentre l'origine (u, z) = (0,0) ¢ una soluzione instabile. In questo caso la malattia ¢
endemica. Al contrario, se 7 < 1, ¢’é solo l'equilibrio (u, z) = (0, 0) che é stabile e attrattivo,
dunque 'epidemia si estingue.

Ross comprese che I'unico parametro su cui si puo agire in modo relativamente facilmente &
M, il numero di zanzare. Sotto una certa soglia r scende sotto 1, fermando ’epidemia. Na-
turalmente, ¢ di aiuto anche poter aumentare b (la velocita di guarigione) o usare protezioni
che facciano scendere a (il numero di punture), anche in questo caso 7 si riduce.

Esercizio

Consideriamo un modello per i livelli trofici di un ecosistema, in particolare vogliamo mo-
dellizzare ’abbondanza di biomassa, presente all’interno di 5 compartimenti:

e N: disponibile nell’ambiente, sotto forma di componenti di base
e P: nei produttori primari (vegetali);

e [: negli erbivori

e (' nei carnivori

e D: nei decompositori, che ritrasformano biomassa in sostanze di base nell’ambiente

L’esercizio consiste nel provare a capire la relazione tra le variabili, e qual puo essere un buon
modello che descrive il sistema.
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Capitolo 3

Biforcazioni, catastrofi, caos

Come ho gia illustrato, i modelli differenziali permettono di studiare come evolvono nel tempo
alcuni fenomeni. In molti degli esempi che abbiamo fatto, al passare del tempo, il sistema
raggiunge un equilibrio stabile, anche se ci sono altre possibilita, come nel caso delle orbite
periodiche del sistema preda-predatore (nei prossimi paragrafi ne vedremo altre ancora).
In questo paragrafo affrontiamo gli effetti sugli equilibri di una modifica dei parametri.
Questo argomento € interessante per gli studi ambientali perché in natura spesso alcuni
parametri vengono pitt o meno lentamente modificati, si pensi agli affetti dell’azione umana
sul clima e agli effetti dei cambiamenti climatici sugli ecosistemi, In questi esempi, dunque,
considereremo dei modelli e ci chiederemo come cambia il loro comportamento al cambiare
dei parametri.

Per cominciare, riprendiamo 'analisi delle soluzioni stazionarie del modello di Ross. Indi-
pendentemente dal valore dei parametri, ¢’é sempre Iequilibrio (0,0) (assenza di epidemia).
Inoltre c’é I'equilibrio

” a2
B gf)_qu—l _oor—=1
" a2pgR aqg
Pt 44 rtag/B
a2
- ng—l B r—1
a’pgR apR
T R e T R[S

che dipende dal parametro positivo r = a?pgR/(b3). Ricordo che u e z sono, rispettivamente,
le frazioni di umani e di zanzare infette, e dunque, anche se questa coppia di valori &€ sempre
una soluzione di equilibrio, essa ha un senso biologico solo se u e z sono compresi nell’inter-
vallo [0, 1], e questo accade se e solo se > 1. Ignoriamo questa condizione, e consideriamo
tutti i possibili valori di » > 0. Rappresentiamo in un grafico le soluzioni al variare di r.
Considereremo la sola variabile u, ma ricordiamoci che in corrispondenza di u c¢’é¢ anche a
variabile z, cioé che I’equilibrio riguarda la coppia di variabili.
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Nell’asse delle ascisse c¢’¢ il valore di 7, in quello delle ordinate il valore di u. Nel grafico ci
sono due curve (che cambiano colore): 1'asse delle ascisse, che rappresenta 'equilibrio u = 0,
e la curva crescente, che rappresenta ’altra soluzione, che cambia con r. Ho colorato in blu
la soluzione stabile, e in rosso la soluzione instabile. Come ho gia discusso, la soluzione di
assenza di epidemia é stabile fino a » = 1, dopo diventa instabile, mentre 1’altra soluzione,
quella endemica, diventa stabile.

Rispetto all’analisi che abbiamo gia fatto, aver rappresentato la soluzione endemica anche
quando non é naturalisticamente accettabile perché negativa, ci permette di vedere meglio
I’aspetto matematico del cambiamento di stabilita. Quello che accade in questo caso é che,
attraversandosi, i rami delle due soluzioni si scambiano la stabilita.

Mostriamo ora con un esempio che possono accadere fenomeni pitt complicati, in particolare
)
alcuni modelli esibiscono un comportamenti “catastrofici’.

3.1 Un modello per 'eutrofizzazione

Per questo semplice modello mi sono liberamente ispirato all’articolo di Katherine Meyer
Mathematical Review of Resilience in Ecology, Natural Resource Modeling vol 29, 3 (2016).
L’eutrofizazazione delle acque di un bacino, per esempio un lago, ma anche un mare con poco
ricambio, ¢ il fenomeno di accumulo di sostanze nutritive che induce una proliferazione di
organismi vegetali, in particolare fitoplancton, che rende inospitale I’ambiente per le specie
ittiche. Il modello che mi appresto a descrivere tratta la dinamica delle sostanze nutritive,
che si muovono tra tre compartimenti: I’acqua del bacino, le acque reflue (cioé quelle che
confluiscono nel bacino), e il fondale del bacino.

Indichero con n(t) la concentrazione nell’acqua del bacino di una sostanza nutritiva (per
esempio 1'azoto). Ci sono tre contributi alla variazione di n nel tempo:
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e arrivo di nutrimento dalle acque reflue, modellizzato con il termine di flusso costante
+/{, con ¢ > 0;

e sedimentazione di n sul fondo, modellizzato con il termine di riduzione a tasso costante
—an;

e restituzione di n dal fondo all’acqua, modellizzato con un termine di tipo Michaelis-
Menten generalizzato: +r* &, con r,a > 0. Per semplicitd poniamo k = 2, a =
1.

L’ultimo contributo tiene in conto del fatto che per n piccoli il fenomeno di sedimentazione,
con velocita proporzionale a n, deve dominare sul contributo di restituzione, mentre se n é
grande, ci si aspetta un velocita di restituzione costante.
Il modello é dunque

2 n

n’:f—an%—rlZnQ :€+1+n2(rn—a(1+n2))

Non é possibile studiare analiticamente questo sistema, se non nel caso £ = 0, cioé in assenza
della sorgente di nutrimento. In tal caso, il termine di destra si puo scrivere

] +n2(—om2 +rn—a)

il cui numeratore ¢ n per un polinomio di secondo grado. Gli zeri della funzione sono n = 0

| =4 (5@

che sono numeri reali se » > 2«. Si noti inoltre che per n — +oo la funzione tende a —oo.

Figura 3.1: Modello per I'eutrofizzazione, con £ =0 e ¢ > 0.
Nel primo grafico in figura[3.1| rappresento la velocita di variazione per £ =0, r = 4.2, a = 2,

considerando anche i valori di n negativi, per chiarire gli aspetti matematici. Questa funzione
ha tre zeri, che chiamo, in ordine crescente, nq, no, ng. Naturalmente n; = 0. Per questi tre
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valori, ¢’é equilibrio tra il flusso con cui n si deposita e quello con cui n torna in circolo dal
fondale. Analizzando il segno di n’ in funzione di n notiamo che n; e ng sono equilibri stabili
(e attrattivi), ny ¢ un equilibrio instabile. Possiamo immaginare che ng corrisponda a una
situazione di eutrofizzazione, in cui si ¢ accumulato nel fondale e nell’acqua troppo azoto,
mentre n; a una situazione normale, in cui il nutrimento é assente (e dunque presumibilmente
del tutto assorbito dagli organismi viventi). Nel secondo grafico considero valori di ¢ positivi.
Guardando 'espressione di n’, si comprende che il grafico si ottiene da quello gia disegnato
traslandolo verso l'alto esattamente di /.

Si osservi con attenzione cosa accade ai tre equilibri: I'equilibrio ng si sposta verso destra,
e rimane stabile. Gli equilibrio n; e ny si spostano I'uno verso ’altro, e per un particolare
valore di ¢ arrivano a coincidere. Per valori superiori di ¢ svaniscono entrambi.

13 13 /

ny ny

n 1 ng 1

Figura 3.2: Equilibri in funzione di /.

In figura rappresento in un grafico come variano gli equilibri al variare di ¢. In blu ho
disegnato gli equilibri stabili n; e ng, in rosso ns, quello instabile. Come si vede, ¢’¢ un
valore di soglia per ¢ per il quale ny e ny si annichilano. Con riferimento al secondo grafico,
immaginiamo di considerare una situazione in cui £ € piccolo, per esempio £ = 0.1, e il sistema
¢ nell’equilibrio stabile n1, quindi con poco n disciolto in acqua (assenza di eutrofizzazione).
Facciamo crescere £, il sistema resta nell’equilibrio stabile n; fino al valore critico di ¢, passato
il quale I'equilibrio non esiste pit! L’unica possibilita per il sistema ¢ quella di raggiungere
“catastroficamente” ’altro equilibrio stabile, ng, per cui pero il valore di n é grande e il sistema
¢ in una situazione di eutrofizzazione. Nel grafico rappresento in ocra queste modifiche. Al
crescere ulteriore di n il valore di n3 aumenta, ma non ci sono cambiamenti qualitativi.
Quello che é accaduto ¢ una “catastrofe” il sistema era in uno stato di equilibrio, ma i
parametri sono cambiati e 'equilibrio ¢ scomparso, costringendo il sistema a precipitare
in un differente sistema di equilibrio. E da notare che questo cambiamento drammatico
non ha avuto segni premonitori! (Da un punto di vista strettamente matematico qualche
segno premonitore si potrebbe trovare nella crescita incontrollata della velocita di variazione
dell’equilibrio rispetto al parametro, ma non mi aspetto che questa quantita sia misurabile
in una osservazione naturalistica).

Naturalisticamente, il crescere del flusso di nutrimento ha ecceduto la capacita del sistema
di restare in un equilibrio con piccoli valori di n in acqua, e il sistema ha trovato un altro
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equilibrio, con n pitt grande. Potremmo immaginare di voler tornare all’equilibrio n; facendo
diminuire /¢ fino al valore di partenza, ma purtroppo non funzionerebbe: se partiamo da un
punto di equilibrio ng, continueremo a rimanere nell’equilibrio n3, senza riuscire a tornare su
n1. Questa irreversibilita del passaggio da un equilibrio all’altro é cruciale in ecologia: una
volta spostato ’equilibrio & molto piu difficile tornare indietro, non basta ripristinare i valori
originari dei parametri.

Poiché il sistema dipende da piu parametri, si puo ipotizzare di poter agire, almeno ma-
tematicamente, su un altro parametro, in questo caso r, che misura con quanta efficacia il
fondale fa rientrare nutrimento nelle acque. Considero dunque ¢ = 0.1, a = 2, e rappresento
in figura le soluzioni di equilibrio la variare di r tra 3.2 e 4.3. In questo caso, risulta che
al decrescere di r gli equilibri ny e ng si avvicinano e spariscono.

Dunque una strategia per ritornare all’equilibrio n; potrebbe essere quella di tornare a
¢ = 0.1, arrivando pero sull’equilibrio n3. A questo punto si fa decrescere artificialmente
r (rimuovendo strati di fondale o altro), fino a che non si produce la catastrofe che fa sparire
nz e costringe il sistema a tornare sull’equilibrio n; (I'unico che c¢’¢). Possiamo poi tornare
al valore di r originario.

ng

Figura 3.3: Gli equilibri al variare di r.

La situazione descritta nell’esempio pud sembrare complessa ma ha aspetto geometrico re-
lativamente semplice e comune a vari fenomeni. Ci sono due parametri che governano gli
equilibri, 7 e . Per alcuni valori ’equilibrio & unico e stabile, per altri ci sono due equilibri
stabili e uno instabile (quello intermedio tra i due).

Nel grafico in figura il piano di base ¢ il piano (r,¢), 'asse verticale ¢ il valore di n di
equilibrio. Come si vede, la superficie disegnata dagli equilibri al variare dei due parametri
presenta una “piega’: fuori dalla piega c¢’¢ un unico equilibrio, stabile. Nel piano (r, ¢) questa
situazione corrisponde alla regione fuori dalle due curve nere. Invece, quanto (r, £) &€ un punto
nella regione tra le due curve nere, ci sono tre posizioni di equilibrio, di cui quella intermedia
¢ instabile.

Le frecce disegnano in questo grafico le situazioni che abbiano descritto precedentemente.
Aumentare ¢ fa sparire I’equilibrio inferiore, e fa precipitare il sistema nell’equilibrio superio-
re, che ¢ uno stato stabile di eutrofizzazione. Tornare indietro con il valore di ¢ non ci riporta
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Figura 3.4: La “catastrofe a piega”.

allo stato precedente, bisogna prima passare per una catastrofe inversa, in cui sparisce I'e-
quilibrio superiore. Nell’esempio ci riusciamo operando su r. Ci si riesca anche operando
sul solo parametro ¢, ma bisogna considerare valori negativi di ¢, cioé immaginare di poter
filtrare 'acqua per liberarla del nutrimento in eccesso (ma questa situazione non sarebbe
modellizzabile con un valore costante, come abbiamo fatto).

3.2 Lo shift di ecosistemi

C’¢ un altro modo di rappresentare la catastrofe a piega, che viene molto usato anche in studi
ecologici. La base di questa descrizione viene dalla fisica, in particolare dalla meccanica.
Ricordo in particolare che nei sistemi fisici gioca un ruolo essenziale ’energia potenziale.
Supponiamo di considerare un caso unidimensionale e di avere a che fare con una particella
che nel punto x ha energia potenziale V' (z). La meccanica ci dice che in z la particella sente
una forza f(z) = —V'(z). Consideriamo l'energia potenziale in figura. La forza ¢ nulla
dove V' ¢ nullo, cioé nei punti di massimo, di minimo, e di flesso a tangente orizzontale di
V(z). Per chiarire il moto conviene pensare a una pallina che si muove lungo il grafico di
V', soggetta alla gravita. In effetti se mettiamo la pallina ferma in A, B, C', rimane ferma,
poiché la forza ¢ 0. D’altra parte se la mettiamo vicino a uno di questi punti si osservano due
situazioni differenti: se la mettiamo vicino a A o B, la pallina si allontana; se la mettiamo
vicino a C' la pallina oscilla intorno a C'. Questo vuol dire che A e B sono posizioni di
equilibrio instabili, mentre C' &€ una posizione stabile.

Dunque i sistemi meccanici hanno questa proprieta: i punti di minimo relativo dell’energia
potenziale sono punti di equilibrio stabile, i punti a tangente orizzontale che non sono di
minimo sono punti instabili.

Per analogia, spesso si immagina che in sistema naturale (per esempio un ecosistema) sia in
un equilibrio descritto da un punto di minimo di un’opportuna energia potenziale. Al variare
dei parametri ’energia potenziale puo cambiare e puo cambiare la natura degli equilibri.

Considero come esempio l’energia potenziale rappresentata nella figura [3.5 che si modifica
al modificarsi di qualche parametro. Partendo dal grafico a destra in alto: inizialmente c’¢
un solo punto di equilibrio « = x1, che é stabile. Al modificarsi del potenziale I’equilibrio si
sposta di poco, in x9, ma rimane unico e stabile. Nel terzo grafico, I’equilibrio stabile & in
x3 (vicino ai precedenti), ma compare un equilibrio instabile, nel punto di flesso a tangente
orizzontale. Nel grafico successivo il punto instabile biforca in un punto instabile (il punto di
massimo relativo) e in uno stabile, il punto di minimo relativo a destra. In questo momento
dunque il sistema ha due equilibri stabili, ma rimane in quello in cui era, e lo stesso accade
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Figura 3.5: Energia potenziale che si modifica provocando uno shift catastrofico
dell’equilibrio.

in primo grafico in basso a sinistra. Nel grafico successivo la posizione di equilibrio in cui
si trova il sistema va a coincidere con l’equilibrio instabile, in un punto di flesso a tangente
orizzontale, con ascissa xg. In questo istante il sistema non € piu in equilibrio, e puo solo
precipitare nell’unico equilibrio stabile a destra, che nei due grafici successivi si sposta in x;
e xg. Sinoti che mentre i punti da 1 a 6 sono vicini tra loro, e i punti da 7 a 8 sono vicini tra
loro, il primo gruppo ¢ distante dal secondo: il sistema di trova ora in un’altra situazione.

Nella figura rappresento lo stesso sistema, ma utilizzando il grafico di biforcazione. In
ascissa c’¢ il parametro che viene cambiato, in ordinata le posizioni di equilibrio.

In letteratura trovate facilmente grafici tipo quello in figura [3.5 per esempio nel lavoro di
rassegna M. Sheffer, S. Carpenter, J.A. Foley, C. Folke, B. Walker: Catastrophic shifts in
ecosystems Nature, vol 413, 11 (2001). Un tipico esempio é la transizione di un ecosistema da
boscoso a erbaceo, in cui, per il cambiare delle temperature medie e dell’'umidita, I’equilibrio
dello stato “boscoso” diventa instabile e sparisce, e il sistema raggiunge un altro stato stabile,
quello “erbaceo”. Un punto di estrema importanza ¢ che anche se i parametri (temperatura
e umidita) tornano ai livelli precedenti, il sistema rimane nell’equilibrio “erbaceo” fino a che
esiste, o fino a che altri fattori esterni (per esempio un rimboschimento artificiale) non lo
cambiano.

Termino questo paragrafo con un esercizio, che serve a far vedere che i sistemi possono
cambiare in modi differenti da quelli fin qui discussi.
Mi sono liberamente ispirato al modello studiato nell’articolo “Bautin bifurcations in a forest-
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Figura 3.6: Grafico di biforcazione completo per lo shift catastrofico

grassland ecosystem with human-environment interactions” Scientific Reports (2019) 9:2665
https://doi.org/10.1038 /s41598-019-39296-x semplificandolo.

Si vuole descrivere I'interazione tra una comunita umana e ’estensione di foreste e praterie
nella regione di insediamento.

La prima variabile che introduciamo ¢ f € [0, 1], che é frazione di terreno coperto da foreste.
Il valore 1 — f ¢é la frazione di terreno coperta da praterie. In assenza di intervento umano,
la foresta si riduce, a favore delle praterie, con tasso costante v. Incendi periodici bruciano
le praterie, ma meno gli alberi, sopratutto dove sono pitt densi e dunque € meno presente il
sottobosco. Questo effetto si traduce in un termine di crescita del tipo

af(l = fluw(f)

La parte af(1 — f) ¢ un termine di crescita limitata (tipo Verulsth) e non a tasso costante,
perché f & una variabile limitata da 1. La funzione w(f) modula il termine di crescita in base
alla densita della foresta, e dunque ¢ una funzione crescente. Nell’articolo viene suggerita
un’espressione che qui non discuto, per i miei scopi assumo

L’equazione per f ¢ dunque

fl=—vf+af(l-f)f

L’interazione proposta con la comunita umana ¢ di tipo “dinamica delle opinioni”, che riscuote
un grande interesse nella modellistica sociale. Indichiamo con x la frazione degli umani
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“favorevoli” alla foresta. Ci si aspetta che = cresca se f scende sotto una certa soglia, e che x
decresca se f € sopra una certa soglia. Un’espressione semplice con queste caratteristiche &

z(1—2)(1 - 2f)
La parte z(1 — x) ¢ di nuovo un termine di crescita limitata (z deve essere tra 0 e 1), il

termine 1 — 2f & positivo se f < 1/2, negativo se f > 1/2.
L’effetto di « su f viene modellizzato con il termine

hfx
che & un contributo di crescita per f con tasso proporzionale alla grandezza di x.
Esercizio 17.

a Scrivi il sistema complessivo

b Poni v = 0.3, a = 0.5, b = 0.8, e considera h = 0 (cioé non c’¢ azione umana sulla foresta).
Simula il sistema e descrivine il comportamento.

¢ Ora poni A = 0.8. Simula il sistema e descrivine il comportamento.
d Porta il valore di b a 1.2 Simula il sistema e descrivine il comportamento.

e Esplora altri valori dei parametri, e scrivi una relazione conclusiva sul comportamento del modello.

3.3 Modelli differenziali discreti

Vedi [BDM par. 6.4], e in particolare gli esempi 6.4.7, 6.4.8.

3.4 Il modello di May e la transizione al caos

Vedi [BDM par. 6.4] esempio 6.4.9
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Capitolo 4

Richiami di probabilita e statistica

Pensavo di dare per per scontate le nozioni base, che comunque possono essere trovate su
[BDM cap. 9, 10, 11]. Qui faccio una sintesi.

4.1 Mediana, quantili, frequenze cumulate

Vedi [BDM cap 9|, o un qualunque testo di statistica elementare, o anche direttamente le
esercitazioni con R.

4.2 Proprieta estremali della media

(vedi BDM par. 9.2)

E noto che I'informazione contenuta in una collezione di dati viene spesso sintetizzata con il
valore medio, e che la dispersione dei dati viene misurata mediante la deviazione standard.
Approfondiamo questi concetti.

Supponiamo di avere una variabile statistica X, che assume i valori dati numerici, Xy,... Xy.
L’idea di fondo ¢é rappresentare la variabile con un solo numero x, con l’espressione

dove AX, = X; — x é chiamato, a seconda dei contesti, scarto o errore. Il numero x che
sintetizza i valori della variabile X, deve in un qualche senso essere il pit vicino possibile a
tutti i dati. Una interessante scelta per la funzione di vicinanza v(z) ¢ data dalla somma
dei quadrati delle distanze dei punti da x. Poiché il numero dei dati é fissato, per comodita

dividiamo questa somma per IV, e in questo modo consideriamo la media delle quadrati delle
distanze dei dati da x:

Svolgendo i quadrati si ottiene

1 & 1 & 1 &
v(m):NZXf—QNZIXi—O—Nsz.
=1 =1 i=1
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La seconda somma € pari a xX, dove X & la proprio la media aritmetica, I’'ultima somma é
pari a 2. Dunque, cambiando 1'ordine della somma,

— 1
v(z) =2 — 20X + NZX?
=1
che ¢ una funzione quadratica, con la concavita rivolta verso l'alto. Il valore di = che
minimizza v(x) ¢ dunque l'ascissa del vertice, che risulta essere proprio X.

Usando la definizione, possiamo notare che v(X) é proprio la media del quadrato degli scarti
da X, cioé, per definizione é la varianza

N
o2 = %Z(Xi X=X X2
=1

Questo valore deve coincidere con I'ordinata del vertice della parabola che ¢
VX)) =X —2X +X2=X?-X".
Riassumendo: la media aritmetica dei dati é il valore che minimizza la media dei quadrati
delle distanze, che in tal caso ¢ pari alla varianza. Inoltre abbiamo mostrato che
o2 =(X-X2=X2-X
cioé che la varianza ¢ uguale alla differenza tra la media dei quadrati dei dati e il quadrato
della media dei dati.

Ultima osservazione: quando si eleva al quadrato una somma, si ottengono tre termini: i
quadrati dei due termini e i doppi prodotti. E una proprieta della media che da

X; = X + AX;
quadrando e sommando, i doppi prodotti se ne vanno, cioée
X2 = 72 + ag(.
Questa formula ¢ un primo esempio di decomposizione della variabilita (quadratica): la

variabilita di X rispetto a 0 si decompone in un termine dovuto alla distanza della media da
0, il termine 72, e in un termine di variabilita di X rispetto alla media, il termine o'%.

Un altro modo di vedere questo argomento, forse piu sintetico, ¢ il seguente. Torno alla
funzione che misura la distanza quadratica di x dai dati:

i=1
che ¢ lo scarto quadratico medio rispetto a z. Sommo e sottraggo la media dentro, e svolgo
i quadrati

v(g;):%Z((Xi_f)ﬂx—x))?:a§(+2(7_x)x_x+(x_x)2:a§+(x_x)2,

Come si puo notare, il doppio prodotto scompare. Da questa espressione si capisce che v(z)
ha il valore minimo in X, e in tal caso vale 0%, e che la media ha una proprieta importante:
la scarto quadratico medio rispetto a un valore x si decompone in due termini positivi: uno
che ¢ la distanza al quadrato tra z e il valore medio, e ’altro che ¢ la varianza, cio¢ lo scarto
quadratico medio rispetto alla media.
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4.3 Coppie di variabili statistiche

Per le nozioni introduttive su correlazione e covarianza si veda [BDM cap 9]. Qui presento
una versione alternativa della determinazione della retta dei minimi quadrati.

Supponiamo di aver preso N dati per due variabili statistiche, X e Y. Osservando il grafico di
dispersione notiamo un buona correlazione, e in effetti il valore del coefliciente di correlazione
Oy

P = ng
¢ in modulo vicino a 1. In tal caso, possiamo pensare che esista una legge lineare y = ax + b,
che “spiega” y in funzione di z. I dati pero non sono perfettamente allineati (|p| < 1), dunque
vale, al variare di 1,

dove ¢; prende il nome di errore o anche “residuo” (nel senso che il valore di Y “dovrebbe”
essere quello teorico, aX; + b, ma c¢’é una differenza residua rispetto alla “spiegazione”).

Il primo problema che ci poniamo ¢ quello di determinare la migliore retta possibile che sia
vicina ai dati, cioé dobbiamo trovare a e b. Anche in questo caso é essenziale fissare prima in
che senso la retta deve essere migliore. Nell’ottica in cui abbiamo scritto il modello lineare
(4.3.1)), cerchiamo di minimizzare la somma dei quadrati dei residui: + >~ 2. Come abbiamo
gia visto nel caso della media, se riusciamo nella nostra operazione di minimizzazione, la
media degli errori deve essere 0. Imponendo questo fatto e calcolando la media di entrambi
i membri dell’equazione si ottiene

Y=aX+b

Dunque la retta migliore (che ¢ la retta di regressione o retta dei minimi quadrati
passa necessariamente per il baricentro dei dati, cioé per il punto del piano (z,y) che ha
come coordinate (X,Y).
Ovviamente questa informazione non basta a trovare la retta: i parametri sono due, e per ora
abbiamo ottenuto una sola informazione. Usando questa informazione scriviamo gli scarti di
Y:

AY; =Y, —Y =aX; +b— (aX +b) + & = aAX; +¢

Dunque
1 1

che svolgendo il quadrato e sviluppando le somme, ¢

1
2 _ 2 2 2
NE g; =0y —2a0xy +a"0x

Quindi la media dei quadrati dei residui é una funzione quadratica del coefficiente a, che ha
come grafico una parabola. Il minimo si ottiene se a ¢ 1’ascissa del vertice, cioé

_ Oxy

2
Ox

che si puo anche scrivere in termini del coefficiente di correlazione:

_Oxy  O0Xx
a=—=p—.
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Questa uguaglianza ci dice quanto vale a, usando il fatto che la retta passa per il baricentro
si determina anche b, risolvendo il problema di partenza.
Usando il valore di a appena trovato, intanto notiamo che

2 2 _ 22
a“ox = poy.

Inoltre possiamo calcolare quanto vale al minino la media del quadrato dei residui, che,
poiché i residui hanno media nulla, € la varianza dei residui:

02 = 0y — 2p°0y + pPoy = oy — pPoy,
Quindi, anche in questo caso, dalla ottimizzazione del parametro a nel modello
AY; = CZAXZ + &

si ottiene

2 _ 2 2 2 _ 2.2 2
Oy =G 0x +0. =p 0y + 0,

Detto in parole: la varianza della variabile Y ¢ la somma di un contributo dovuto alla
varianza della variabile X, pit un contributo di variabilita dovuto alla varianza dei residui.
Dividendo per 0% si ottiene

1= p*+ol/oy

che leggiamo in questo modo: p? ¢ la frazione della variabilita di Y spiegata dal modello
lineare, mentre 02/0% = 1 — p? ¢ la frazione residua. Un modello lineare sara tanto migliore
quanto pill p? si avvicinera a 1. Il numero p? ¢ anche detto coefficiente di determinazione.

Una ultima osservazione: data la variabile X, la variabile
X-X

%5'¢

é una variabile adimensionale, a media nulla e con deviazione standard 1. E la standar-
dizzazione della variabile X. La retta di regressione ha una forma semplice in termini di
variabili standardizzate, infatti

Oy 0x Oy 0Xx

cioe il coefficiente angolare della retta tra gli scarti standardizzati é proprio il coefficiente
di correlazione. Se i dati sono perfettamente allineati con correlazione positiva, gli scarti
standardizzati sono perfettamente uguali, cioé p = 1. In caso di perfetto allineamento con
correlazione negativa, gli scarti sono opposti in segno, ma uguali in modulo.

4.4 Probabilita ed eventi

Fenomeni che sono governati da troppe cause, o da cause sconosciute, assumono un aspetto
“casuale” (o aleatorio) nel loro verificarsi. Esempi semplici e classici sono il lancio di un
dado o di una moneta.

La modellizzazione matematica di un evento casuale discreto (ovvero di un evento che puo
verificarsi in un numero finito di varianti), viene fatta in quattro passi:
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1) Identificare I'insieme ( o spazio) degli eventi elementari

E={e, e ..., e},

cioé l'insieme delle n varianti con cui I’evento pud verificarsi. Nel caso della moneta E =

{T,C}, nel caso del dado E = {1,2,3,4,5,6}

2) Assegnare un valore di probabilita ad ogni evento elementare. Indichero con p; il valore
assegnato all’evento e;. Si assume 0 < p; < 1; il valore 0 é assegnato agli eventi impossibili,
il valore 1 all’evento certo, ovvero che si verifica sicuramente. Inoltre la somma delle

probabilita é 1:
i=1

Nel modello per la moneta non truccata si considerano equiprobabili gli eventi “T” e “C”,
dunque si assegna ad essi la probabilita % Per una moneta truccata questi numeri saranno
diversi: indicando con pry la probabilita che esca testa, la probabilita che esca croce sara
pc = 1 —pr. 1l caso estremo (una moneta con la “testa” su entrambe le facce) & descritto da

pTzlepc:().

3) Identificare gli eventi che si vogliono descrivere. Chiamero evento ogni sottoinsieme
dello spazio degli eventi elementari

ACE.

Il motivo di questa definizione si chiarisce meglio con un esempio: nel lancio di un dado
potrebbe interessarci il fatto che esca un numero pari; questo “evento composto” racchiude
gli eventi elementari 2,4, 6, quindi lo identifichiamo con il sottoinsieme {2, 4, 6} dello spazio
degli eventi.

4) Usare la regola di calcolo per le probabilita degli eventi composti: se A C E, la probabilita
che si verifichi A, indicata con P(A), é la somma delle probabilita degli eventi elementari che
costituiscono A. Nell’esempio precedente, la probabilita che esca un numero pari € ps+ps—+ps.

La regola per il calcolo della probabilita di un evento composto ¢ in caso particolare della
seguente regola pitl generale:

A e B sono eventi incompatibili se non possono verificarsi contemporaneamente; in tal caso
la probabilita dell’evento “A o B” ¢ la somma delle probabilita di A e B

Espressa in termini matematici:

se ANB =10, allora P(AUB) = P(A) + P(B),

Infatti gli eventi sono incompatibili se non c¢’¢ nessun evento elementare che appartenga
ad entrambi (e dunque l'intersezione degli eventi ¢ 'insieme vuoto), mentre ’evento “A o
B” & costituito dall’insieme degli eventi elementari per cui si realizza A oppure B, quindi
dall’'unione insiemistica di A e B.

Esercizio di riepilogo. Un dado tetraedrico irregolare ha le facce numerate da 1 a 4. Si
supponga che p; = %, Py = i, p3 = %. Determinare ps. Descrivere insiemisticamente gli

eventi seguenti, e calcolarne la probabilita
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e A, esce un numero dispari

e As non esce un numero dispari

As non esce 3

A, esce 2 0 un numero dispari

Dire quali sono le coppie di eventi incompatibili.

La “legge dei grandi numeri” da una motivazione alla costruzione precedente, e lega la
probabilita alla statistica.

Supponiamo di avere una moneta non truccata, e facciamo N lanci. Possiamo trattare i dati
che abbiamo ottenuto con metodi statistici definendo

Fn(T) = frequenza assoluta dell’uscita di T in N lanci.

fn(T) = Fy(T)/N = frequenza relativa dell’uscita di T in N lanci.

Se il nostro modello probabilistico & quello giusto per descrivere il fenomeno, ci aspettiamo
che al crescere del numero delle prove la frequenza relativa si avvicini al valore assegnato
della probabilita.

061
“S*VMMVW
0]

Figura 4.1: Frequenze relative di T al variare del numero di prove

Piu in generale, in un modello assegneremo all’evento e; la probabilita P(e;) = p; se ci
aspettiamo che p; sara il valore asintotico della frequenza relativa dell’evento e;. In genere la
scelta delle p; viene fatta in base a semplici considerazioni, in cui gioca un ruolo fondamentale
la presunzione di equiprobabilita: se non abbiamo motivo di pensare che un evento sia
favorito rispetto a un altro, gli assegneremo la stessa probabilita. Questo ¢ il caso delle
monete, dei dadi, dei giochi di carte. A partire da semplici esempi pero si possono costruire
modelli molto utili e interessanti.
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4.5 Eventi indipendenti

Consideriamo il lancio consecutivo di due monete non truccate. Evidentemente, 1’esito del
lancio della seconda moneta non dipende dall’esisto del lancio della prima, e viceversa. In
particolare ’evento “la prima moneta da T” é indipendente dall’evento “la seconda moneta
da T”. In termini di probabilita, A e B si definiscono indipendenti se

P(ANB) = P(A)P(B).

La ragionevolezza di questa definizione si comprende pensando alle frequenze relative nel
caso di molti lanci delle due monete. Supponiamo di fare 1000 lanci. In circa 500 casi la
prima moneta da T; di questi casi, in circa la meta (250) anche la seconda moneta da T.
Dunque la frequenza relativa dell’uscita T'T sara circa un quarto.

Un caso particolare di eventi indipendenti & quello in cui si ripete lo stesso esperimento
probabilistico, per esempio il lancio successivo di una moneta, per la quale la probabilita che
esca testa é p.

Supponiamo di effettuare 10 lanci. Lo spazio degli eventi ¢ B! = Ex Ex Ex E x E x
Ex E x Ex E x E. Per semplicita indichero gli eventi con sequenze ordinate di T e C. Ad
esempio TTCTCCTCCC invece di (T,7T,C,T,C,C,T,C,C,C). Resta inteso che il primo
simbolo si riferisce al primo lancio, il secondo al secondo, etc. .

Esercizio. Quanti sono gli eventi elementari in E1¢? [Risposta: 2'0 = 1024]

Esercizio. Qual ¢ la probabilita dell’evento TTCTCCTCCC? [Risposta: p*(1 — p)9]
E dell’evento TTTTCCCCCC? |Risposta: la stessa|
E dell’evento CCCCCCTTTT? |Risposta: la stessal

FEsercizio. Sia N il numero di lanci che viene effettuato; data una stringa (sequenza) qua-
lunque, come determino facilmente la sua probabilita? [Risposta: se k ¢ il numero di T, la
probabilita & p¥(1 — p)V=F),

Come si vede dagli esempi precedenti, la probabilita di una sequenza dipende solo dal numero
di T che contiene, e non dal loro ordine. La domanda a cui vogliamo rispondere é:
su n lanci, qual & la probabilita che esca k volte T7

Esempio. Con quale probabilita ho due T con due lanci? E una T? E nessuna T?

L’evento “due T” ¢ esattamente ’evento TT, che ha probabilita p?. L’evento “nessuna T” &
esattamente 1’evento CC, che ha probabilita (1—p)?. L’evento “una T” ¢ un evento composto:
{TC,CT}. Essendo TC e CT eventi elementari (quindi incompatibili), la probabilita cercata
¢ la somma delle singole probabilita. Esse sono entrambe uguali a p(1 —p) (infatti il numero
di T ¢ lo stesso). Dunque la probabilita di “una testa” & 2p(1 — p).

In generale, 'evento “su n lanci esce k volte T” é un evento composto: ¢ l'insieme di tutte
le stringhe che contengono esattamente k volte testa; ogni singola stringa con k volte T ha
probabilita p*(1 — p)»*.

Dunque per determinarne la probabilita é sufficiente contare il numero di stringhe che hanno
esattamente k volte T. La risposta a questa domanda é data dal coefficiente binomiale:
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dove con il punto esclamativo si intende il fattoriale del numero, cioé il prodotto di tutti
gli interi da 1 al numero:
al=1x2x---Xa.

In generale, si chiama distribuzione binomiale la legge di probabilita che descrive il nu-
mero di “successi” su N prove indipendenti, assumendo che la probabilita di successo in una
singola prova sia p:

P = () )t -p

4.6 Probabilita condizionate, formula di Bayes, test dia-
gnostici

Vedi [BDM] cap. 10.

4.7 Variabili aleatorie

Si chiama variabile aleatoria una qualunque funzione degli eventi elementari. Questa
definizione astratta si concettizza spesso nel caso in cui associamo numeri ad eventi. Per
esempio, il numero di successi su N prove indipendenti di un esperimento ¢ una variabile
aleatoria binomiale.

La scelta di un numero intero a caso tra 1,2,... N é invece una variabile aleatoria unifor-
me in {1,... N}. Concettualmente non c’¢ differenza tra trattare eventi che si chiamano A,
B, o e, oppure eventi a cui ¢ associato un valore numerico, pero il caso di variabili aleatorie
numeriche permette di definire delle quantita molto utili, i valori attesi.

Li introduco con un esempio. Si supponga di partecipare a un test a risposta multipla. Ogni
domanda ha 5 possibili risposte, di cui una sola esatta a cui € assegnato punteggio 1. Alla
risposta non data € assegnato il punteggio 0. Per scoraggiare risposte casuali, in genere viene
assegnato un punteggio negativo alle risposte errate. Supponiamo che sia —0.25. Chiediamoci
cosa accade a uno studente che risponde sempre a caso, su un test fatto di N domande. Il
suo punteggio medio per domanda sara

+1x k—0.25 x (N —k)
N

dove k ¢ il numero di risposte esatte che ha dato. Poiché la probabilita di date una risposta
esatta scegliendo a caso ¢ 1/5, invocando la legge dei grandi numeri, ci aspettiamo che il
rapporto k/N sia vicino a 1/5. Analogamente, il rapporto (N — k)/M sara vicino a 4/5, che
¢ la probabilita di dare una risposta errata. Dunque il punteggio medio per domanda sara
vicino al valore | A

+1><5 0.25><5—0
“In media”, lo studente che risponde a caso riceve 0 punti per esercizio (questo ¢ il motivo
della scelta di -0.25 per il punteggio delle risposte errate).
Per predire il punteggio medio su un gran numero di prove, abbiamo sommato i possibili valori
della variabile (in questo caso +1 e —0.25, pesati con la loro probabilita). Generalizziamo.
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Sia X una variabile aleatoria, che pud assumere i valori reali T1,...Tp, CON robabilita
) ) )
P1s..-DPn- Si chiama valore atteso il numero

<X> = Z Tipi

(nell’esempio precedente, n = 2). Supponiamo ora di estrarre N volte questa variabile,
ottenendo i valori X7, ... Xy (nell’esempio precedente, questi valori sono i punteggi che lo
studente ottiene nelle singole domande). Si chiama media empirica il valore

1 N
mN:N;Xh

Riorganizziamo i termini della somma, indicando con Fiy(j) la frequenza assoluta con cui
esce z; e con fy(j) la frequenza relativa

my = %inm(m => i fi(N)
i=1 =1

Se N ¢ grande, ci si aspetta che f;(N) ~ p;, dunque
my ~ (X)
cioé il valore atteso é predittivo del valore della media empirica, per N grande.

Spesso ¢ utile considerare funzioni di variabili aleatorie. In generale, se f ¢ una funzione e
X & una variabile aleatoria, f(X) & una variabile aleatoria, e il suo valore atteso ¢

(f(X)) = Zf(mm

In particolare, si chiama varianza il valore atteso dello scarto quadratico
o? = ((X — (X))?)

Come vedremo successivamente, questo valore ¢ anche uguale alla differenza tra il valore
atteso del quadrato della variabile e il quadrato del valore atteso:

o = (X = (X))*) = (X?) = (X)*
Come esercizio calcoliamo la varianza del voto dello studente che risponde a caso:

1 4 1 1 4 1
== x g+l X5t E*57 1

Calcoliamo anche valore atteso e varianza di una variabile aleatoria X che vale 1 con
probabilita p, e 0 con probabilita 1 — p:

(X)=1xp+0x(1—p)=p
o’ =<(X—p)P>=1-p’xp+(0—-p°x(1—p) =p(l-p)

Sui valori attesi di somma e prodotto valgono i due seguenti importanti fatti:
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e il valore atteso della somma di variabili aleatorie ¢ uguale alla somma dei valori attesi
delle variabili;

e la varianza della somma di variabili aleatorie indipendenti ¢ uguale alla somma delle
varianze delle variabili.

La prima asserzione sembra molto naturale, pensando a qualche esempio. Nel caso di rispo-
ste casuali a due domande, il valore atteso del voto per la prima domanda ¢ zero, quello per
la seconda € zero, il voto atteso complessivo sara naturalmente 0+ 0 = 0. In questo esempio,
pero, le due variabili, voto alla prima domanda, e voto alla seconda domanda, sono indipen-
denti. Immaginiamo che lo studente scelga a caso quale risposta dare alla prima domanda,
e alla seconda risponda esattamente nello stesso modo. In questo caso le due variabili non
sono indipendenti, ma il valore atteso ¢ sempre 0. Lo stesso accede se lo studente sceglie
a caso la seconda risposta tra quelle diverse dalla risposta che ha dato alla prima doman-
da. Per esercizio, si calcoli la varianza del voto totale nei tre casi descritti: scelta casuale
indipendente, scelta casale identica, scelta casuale differente. Quale sara la maggiore?

Dimostro che la prima asserzione € vera, anche se le variabili non sono indipendenti. Consi-
dero due variabili, X che assume valori z;, 7 = 1,...k, e Y che assume valori y;, j =1...h.
Conoscere la distribuzione di probabilita per X e per Y & una descrizione parziale, perché
non prendiamo in considerazione come si accoppiano i valori delle due variabili. Invece &

necessario specificare
PX=z,eY =y,)

che ¢ detta distribuzione congiunta delle due variabili. Se le variabili sono indipendenti,
allora

Nel caso generale P(X = z; e Y = y;) = p;; saranno degli opportuni valori, a somma 1.
Sommando su tutti i possibili valori che puo assumere la variabile Y, si ottiene la distribuzione
della variabile X e viceversa:

N h
:ZP(XIZIH eY =y;) :ZPU
i=1 7=l
. k
:ZP(XIZIH eY =y;) :Zpij
i=1 =1

A questo punto é facile calcolare

k h

(X+Y) =D (@i +y)pi; = szzpzﬂrzz.%pm

=1 j=1 =1 j=1 =1 j=1
k h h

= inP(X = x;) Z?JJP(Y = y;) = (X) +(Y)

Vediamo invece perché ¢ vera la seconda asserzione, nel caso in cui

PX=gzieY =y;) = P(X =x;)P(Y =)
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(XY)=> > ay; P(X = ;) P(Y = y;)

— inP(X = ;) ZyjP(Y =1y;) = (X)(Y)

Come conseguenza, si ha che la varianza della somma di due variabili aleatorie indipendenti
¢ uguale alla somma delle varianze. Infatti lo scarto quadratico della somma é

(X+Y (X +Y) =X —(X)+Y —(Y))?
= (X — (X)) 42X — (X)) (Y = (V) + (Y = (Y))?

Il valore atteso di X — (X) e di Y — (Y)) & zero, dunque, usando I'indipendenza, si ottiene
che il valore atteso del termine al centro € 0. I valori attesi degli altri due sono esattamente
le varianza di X e Y. In sintesi, per due variabili indipendenti:

2 _ 2 2
Oxyy = O0x T 0y

Ora siano in grado di calcolare senza (troppi) sforzi, il valore atteso e la varianza di una
variabile aleatoria relativa a N lanci con probabilita di successo p per ogni lancio. Infatti la
variabile aleatoria Iy = numero di successi su N esperimenti si ottiene contando il numero
di successi, cioé

Fy=X 4+ -+ Xy

dove X; vale 1 se all'i-esimo esperimento si ottiene il successo, e 0 altrimenti (chiamo Fy
questa variabile, perché é la frequenza di successi negli N esperimenti). Le variabili aleatorie
X; sono indipendenti, hanno media p e varianza p(1 — p), come abbiamo calcolato negli
esercizi precedenti. Usando che il valore atteso della somma ¢ pari alla soma dei valori attesi
si ottiene

(Fn) = Np

(come c’era da aspettarsi, pensando alle frequenze). Usando I'indipendenza, anche la varian-
za € la somma delle varianze, e dunque

o® = Np(1 —p)

4.8 Medie empiriche e valori attesi

Torniamo ancora sull’esempio della variabile binomiale Fy, numero di successi in N prove, e
chiediamoci che cosa accade al crescere di N. Il suo valore atteso & pN, la sua varianza Np(1—
p). Ricordando che la deviazione standard esprime 'ordine di grandezza dello scostamento
dal valore atteso, possiamo dire che

Fx = pN + errore, con 'errore dell’ordine di VN

Quindi 'ordine di grandezza dell’errore cresce al crescere di N. Torniamo all’esempio della
moneta non truccata. Su 100 lanci mi aspetto circa 50 teste, con un errore dell’ordine di
v/100/4 ~ 5. Su 10 000 lanci, l'errore ¢ dell’ordine di 50. Su un milione di lanci l'errore &
dell’ordine di 500.
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Figura 4.2: Distribuzione di probabilita dell’errore Fy — pN

Vediamo graficamente questo fatto, nel caso p = 0.4, rappresentando la distribuzione della
variabile Fy — pN, per alcuni valori di N. Come si nota, al crescere di N la distribuzione si
allarga e si abbassa, rendendo probabile che I’errore sia un numero grande.

Chiediamoci invece cosa accade alla media empirica del numero di successi, cioé a fy =
Fy/N. Tl valore atteso di questa variabile ¢ p, la varianza ¢ Np(1 — p)/N? = p(1 — p)/N.
Dunque

1
fnv =p+ errore, con l'errore dell’ordine di ——

VN

Stavolta, al crescere di N, la taglia dell’errore diminuisce.

nero = 10

rosso = 100

20
1

verde = 1000

densita’ di probabilita’

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

errore sulla frequenza relativa fy - pN
Figura 4.3: Distribuzione di probabilita dell’errore fy — p

In questo secondo grafico non ho rappresentato le probabilitd ma le densita, quindi le
probabilita sono rappresentate dalle aree.
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Stiamo descrivendo con maggior dettaglio la legge dei grandi numeri: per N grande, il valore
della frequenza relativa dista dalla probabilita per un errore di taglia 1/ V'N, che dunque va
a 0 per N che tende a +00. Graficamente, al crescere di N la densita di probabilita diventa
sempre pill alta e piu stretta, al contrario del caso precedente, in cui diventava piti bassa e
piu larga.

Ricapitolando

N
Fy —pN = Z(X, —p) ¢ dell’'ordine di VN
i=1

N
1 1
—p=— E X; — p) é dell’ordine di ——

Osservando queste due relazioni, si comprende che se invece di dividere la somma per per
N si divide per v N allora la varianza dell’errore ¢ di ordine 1, non va né a oo né a 0.
Osserviamo graficamente cosa accade alla variabile aleatoria

(Xi—p)

=1

==

1.0

0.8

0.6

densita’ di probabilita’
0.4

0.2

0.0
|

T T T T T
-2 -1 0 1 2

(Fu~pN) IN=IN/(fy~p)

Figura 4.4: Distribuzione di probabilita di 3°.(X; — p)/V'N

La forma della curva si stabilizza rapidamente. Prima di descrivere esattamente cosa accade,
richiamo due definizioni.

Una variabile aleatoria normale standard ¢ una variabile aleatoria Z che puo assumere
tutti i valori reali, e ha densita di probabilita

I1 suo valore atteso é 0, la sua deviazione standard ¢ 1 (graficamente, +1 sono le ascisse dei
punti di flesso).
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Consideriamo ora la variabile aleatoria ¢Z + u, con ¢ > 0 e p qualunque parametri fissati. Il
suo valore atteso é i, perché Z ha valore atteso nullo. La sua varianza ¢ uguale alla varianza
di 0 Z, perché gli scarti non dipendono da pu, e questa variabile ha varianza 2. La variabile
0Z + i € detta normale o gaussiana, di media p e deviazione standard o, e ha densita di
probabilita

1

2o
In questo caso, x = p € asse di simmetria per il grafico, e u é 'ascissa del massimo, mentre
1+ o sono le ascisse dei punti di flesso. Il grafico si ottiene da quello nella normale standard
dilatando di o le x, dividendo per o le y, e traslando il grafico a destra di p. In figura mostro
mostro il caso di p = 0.

o~ (@) (20%)

71—\

0z
or-
-2 E3 ) 1 2

Figura 4.5:

Allaumentare di ¢ la “campana’ si allarga, infatti ¢ ¢ una misura di dispersione: piu €&
grande, pit i dati sono dispersi. In figura ¢ = 1/2,1,3/2. Se x ¢ una variabile gaussiana di
media p e varianza o2,

P(—0 <z —p <o) ~0.6826895

P(—20 <z — p < 20) ~ 0.9544997
P(—30 <z — p < 30) ~0.9973002
P(—1.959960 < x — u < 1.959960) ~ 0.95

Per N — +o00 la variabile aleatoria
| X
Wi Z(Xz —p)
N3
tende proprio a una variabile aleatoria gaussiana, di media nulla e di varianza p(1 — p).

Piu in generale vale il teorema del limite centrale: siano X, X,... variabili aleatorie
indipendenti e con la stessa distribuzione, di media p e varianza 2. Allora

N
1
e IR
i=1
tende a una variabile aleatoria gaussiana di media u e varianza o2.

Il fatto descritto da questo teorema ci permette di precisare meglio il rapporto tra la media
empirica in esperimenti ripetuti e il valore atteso: la media empirica

1 N
i=1
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¢ approssimativamente distribuita come una variabile aleatoria gaussiana, di media u e de-
viazione standard o/ VN, e questo fatto ¢ fondamentale nelle applicazioni. La situazione pit
tipica é quella di voler conoscere una proprieta media di una popolazione statistica. Faccio
qualche esempio: in ambito politico sociologico, le intenzioni di voto dei cittadini di uno sta-
to per un referendum, la propensione alla lettura negli adolescenti; nell’ambito delle scienze
della vita, in contenuto di sostanze nocive nelle specie dei vari livelli trofici, le dimensioni
medie degli adulti di specie animali acquatiche. In tutti questi esempi, non si puo ottenere la
misura su tutta la popolazione, dunque ci si accontenta di misurare i dati su un campione.
Non entro nella teoria del campionamento, e mi limito a considerare il caso pitt semplice, in
cui il campione sia ottenuto scegliendo in sequenza un elemento a caso della popolazione.
In questo modo siamo esattamente nella condizione descritta dalle ipotesi del teorema del
limite centrale, e la media empirica sul campione sara uno stimatore della media vera, con
errore che decresce proporzionalmente alla radice quadrata della dimensione del campione.
Nella pratica, sono molto piti comuni i campionamenti senza ripetizione, in cui il campione
é scelto tutto insieme. Il risultato non cambia, e si tenga presente che se la popolazione ¢
grande rispetto alla numerosita del campione, una strategia di campionamento con ripetizione
difficilmente generera un campione con ripetizioni.

Un’osservazione sulla varianza nei campionamenti. La legge dei grandi numeri e il teorema del
limite centrale ci dicono che la media empirica é uno stimatore della media di popolazione.
In particolare, il suo valore atteso € proprio la media di popolazione.

Se conoscessimo la media di popolazione,

1 2
T 20— ()

sarebbe uno stimatore della varianza. Perd (X) non ¢ nota, e va sostituita con la media
empirica my. In questo modo, pero, si ottiene uno stimatore non corretto, nel senso che il
suo valore atteso non é uguale alla varianza di popolazione.

Si chiama varianza campionaria il numero

1

i

Si prova che il suo valore atteso, in un campionamento casuale con ripetizioni, ¢ pari alla
varianza di popolazione. (Nel caso di campionamento senza ripetizioni, il valore atteso ¢ pari
alla varianza campionaria di tutta la popolazione, che, se la popolazione € molto numerosa,
differisce di poco da quella di popolazione).
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Capitolo 5
Indici di diversita

La statistica descrittiva fornisce anche strumenti per la definizione di indici di biodiversita
(indici che fanno parte dell’ampia classe degli indici di diversita), che misurano quanto poco
omogenea sia una distribuzione.

Per fare un esempio concreto con cui introdurre questi indici, considero una situazione in
cui su due territori si misurano le presenze di 3 differenti varieta di una pianta (V1, V2, V3)
secondo la seguente tabella di abbondanze.

territorio | V1~ V2 V3

A 0.20 0.30 0.50
B 0.30 0.35 0.35
C 0.10 0.20 0.70
D 0.40 O 0.60

Stiamo lavorando sulla tabella di frequenze relative di variabili nominali. Il primo indice
utile é la ricchezza di specie cioé¢ il numero di fattori a frequenza non nulla. Questo
indice ¢ 3 per territori A, B, C, ed ¢é 2 per il territorio D, dove dunque ¢’é meno biodiversita.

Si possono pero considerare indici piu sofisticati, legati alla descrizione probabilistica dei dati.
Supponiamo di essere nel territorio A, e di scegliere casualmente una pianta. La tabella delle
frequenze relative ci da la probabilitd con cui osserveremo le tre possibili varieta,

p1=P(V1) =02, po=P(V2)=0.3, py = P(V3) =05

Per dare la misura della biodiversita, possiamo calcolare la probabilita che due piante scelte
a caso siano uguali. Se questo numero € alto, ¢’é poca biodiversita, se é basso ce ne é molta.
Il calcolo é facile, e si fa usando le regole per il calcolo della probabilita. Sia z; la varieta a
cui appartiene la prima pianta scelta, e sia x5 la varieta a cui appartiene la seconda pianta.
Vogliamo calcolare

P(SCl = LBQ) = P(l’l = Vl,l’g = Vl) +P(I1 = V3,$2 = V3) +P(.%'1 = V3,£L'2 = V3>
(si usa la regola della somma perché si tratta di eventi incompatibili). Per calcolare il valore
dei singoli addendi possiamo usare la regola del prodotto per il calcolo della probabilita degli
eventi indipendenti. Si ottiene

P(xy = x3) = p} + p3 + p3
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In caso di n varieta,
n
P(xy =) =Y 1}
i=1

Questo numero si chiama indice di Simpson, e misura I'uguaglianza, pit che la diversita,
nel senso che il valore piu alto possibile é 1, e si ottiene se ¢’é solo una specie, e dunque
si ha il minimo possibile di biodiversita e il massimo dell'uguaglianza. Fissato il numero n
di specie, il minimo di questo indice si ha quando le abbondanze relative sono uguali, che
dunque devono essere pari a 1/n, e dunque

n

1 1 1
P(xy =x9) = 2 SENs =
Si noti che, nello studio della genetica degli eucarioti, se py, p2, p3 sono le frequenze dei tre
possibili alleli di un gene in una popolazione, allora questo numero ¢ I’omozigosita, cioée
la frequenza relativa degli omozigoti. L’opposto di questo indice é I'eterozigosita, cioé la
probabilita di incontrare un eterozigote, che dunque ¢ pari a

1- Zn:p?
=1

Nello studio della biodiversita, questo indice ¢ I'indice di Gini-Simpson, e vale 0 se non
c’é biodiversita, mentre vale 1 — 1/n, se ¢’é la massima biodiversita, fissata la ricchezza di
specie n.

Per esercizio, si calcoli questo indice per i tre territori della tabella precedente.

Si possono avere indici uguali anche in presenza di situazioni differenti di biodiversita: per
esempio avere moltissime specie con bassa frequenza relativa, puo essere equivalente ad avere
poche specie con frequenze piuttosto differenti.

Per poter distinguere tra queste situazioni si utilizzano delle generalizzazioni di questo indice,
che si ottengono a partire da un’interpretazione dell’indice di Simpson. Si puod considerare
p; come l'abbondanza relativa a; della specie 7. Dunque

ZP? = Zpipi = Z p;a; = valore atteso dell’abbondanza relativa
i=1 i=1 i=1

Dato g > 0, si definisce la famiglia di indice di uguaglianza

n n
_ E : q __ § : q+1
)‘q - piai - pi
=1 =1

che ¢ il valore atteso della potenza g dell’abbondanza relativa. A partire da questo indice si
puo costruire il profilo di diversita
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Per ¢ = 1 si ottiene l'indice di Gini-Simpson. Piu é grande ¢, piu il contributo delle basse
frequenze diminuisce. Per fare un esempio, se ho 10 specie con frequenza 1/100, nell’indice di
Simpson ho un contributo 10/100* = 1/1000, nel caso di A, ho un contributo 10/100* = 10~
(si veda nel grafico successivo lo scavalcamento delle curve di C e D). Dunque al crescere di
q questo indice trascura le abbondanze piccole. Al contrario, al decrescere di ¢ si esalta il
contributo alla diversita dovuto alle specie di piccola abbondanza relativa. Vale dunque la
pena calcolare il limite per g che tende a 0, ultimo valore possibile per questo indice. Per chi
se lo ricorda, questo calcolo si puo fare con la regola di de I'Hopital, osservando che

d d
_p1+q — — oHa)np _ p1+q Inp

dg dg
Dunque

1 n
Ag=lm=(1-X)=-> pnp,
=1

q—0 q

Questo indice si chiama entropia di Shannon e ha un ruolo cruciale anche in informatica
teorica, perché permette di definire il contenuto di informazione di una sequenza di simboli.
Piu é bassa 'entropia, meno informazione c¢’¢, meno biodiversita c’e.

Si noti che 'entropia di Shannon é il valore atteso di meno il logaritmo della probabilita.
Si puod pensare che — Inp; quantifichi la “sorpresa” di osservare 'evento di frequenza p;: se
p; = 1 la sospresa ¢ 0, se p; = 0 la sorpresa ¢é infinita (si noti la coincidenza formale con la
legge di Weber-Fechner: se p; passa da 1/10 a 1/100, la sorpresa raddoppia).

Si faccia attenzione al caso in cui una delle p; sia nulla: un normale programma di com-
puter non calcola 0In0, ma il calcolo del limite ci permette di attribuire il valore 0 a
quest’espressione.
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A partire da A, si puo costruire un’ulteriore famiglia di indici. Ricordando che A; ¢ I'indice
di Simpson, che vale 1 se ¢’é una sola specie, e vale 1/n se ce ne sono n, si puod definire

1

Dy = —
1 "

che si puo interpretare come il numero effettivo di specie, cio¢ il numero di specie di
distribuzione uguale, che darebbe lo stesso valore osservato di A;. Si generalizza questo

numero considerando )
D, = —

q 1
A /q

q
che prende il nome di numero di Hill di ordine ¢+ 1, e che si interpreta sempre in termini
di numero effettivo di specie. Nel limite ¢ — 0 si ottiene Dy = e~2°. Invece nel limite

q — 400 questo indice tende a
1

max p;

che come si vede dipende solo dalla specie di frequenza massima.
Questi indici sono piu leggibili, in quanto rappresentano un ‘numero di specie”, e infatti
nell’esempio che stiamo considerando, variano tra 1.5 e 3.

o
(32]
0 |
N
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n
0|

B
C
o
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0
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Capitolo 6

Introduzione a1 test statistici

6.1 Test binomiale esatto

[BDM 12.4] e materiale di laboratorio.

6.2 z—test e t—test

Introduco questi test con un esempio. Supponiamo che sia noto che la distribuzione delle
lunghezze dei pesci di una data specie in laghetto sia ben approssimata da una gaussiana di
media 14 cm e deviazione standard 1.2 cm.

In un laghetto vicino viene trovato un pesce simile, ma di lunghezza 14 cm.

Ci chiediamo se il fatto che la lunghezza sia un po’ diversa, ci faccia dubitare che il pesce sia
della stessa specie di quelli del primo laghetto.

L’ipotesi Hy di questo test € che il dato sulla lunghezza del pesce si il risultato di una
estrazione casuale di una variabile gaussiana Z, di media 14 e deviazione standard 1.2. Il
valore p del test € la probabilita delle code:

> 2xpnorm(14,mean=12.5,sd=1.2,lower.tail=F)
[1] 0.2112995

I1 valore ¢ superiore al 20%, dunque non possiamo dubitare dell’ipotesi Hy. Si osservi che &
noto che per una gaussiana standard le code oltre 1.96 pesano il 5%. Il valore standardizzato

della misura é
14 —-12.5

=1.25<1.96
1.2

e infatti non possiamo rifiutare Hj.

Supponiamo ora di aver trovato sei pesci nel secondo laghetto, e che la media delle loro
lunghezze sia 14. In questo caso la variabile aleatoria che rappresenta la misura ¢ la media
di 6 misure. E noto dalla teoria che se le misure X; sono variabili gaussiane, di media m e
deviazione standard o, allora la media empirica

¢ gaussiana di media m e deviazione standard o/v/ N.
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Quindi per testare 'ipotesi nulla Hy che i 6 pesci abbiano lunghezze distribuite come quelle
dei pesci del primo laghetto, calcoliamo il valore
14 —12.5
= T =125 x V6~ 3
1.2/4/6
valore che supera 2.57 che corrisponde a un valore di soglia per p di 0.01, ma ¢ al di sotto di
3.29 che corrisponde al valore di soglia p = 0.001. Infatti

> 2*pnorm(14,mean=12.5,sd=1.2/sqrt(6),lower.tail=F)
[1] 0.002199647

In questo caso dobbiamo smentire I'ipotesi nulla Hj, e concludere che i pesci del secondo
laghetto sono di una specie con una caratteristica differente (la lunghezza).
A questo punto possiamo anche chiederci quant’e la lunghezza media dei pesci del secondo
laghetto. Il valore misurato ¢ 14, ma il valore vero sara presumibilmente un numero differente.
Si chiama intervallo di confidenza per la media vera l'insieme di tutti i valori m che, assunti
come ipotesi nulla, non verrebbero smentiti dal test, al livello di soglia stabilita. In questo
caso la soglia ¢ 5%, che viene descritta come livello di fiducia del 95%. Quali sono il valori
di m, media teorica, che non verrebbero smentiti dal dato osservato? Per le gaussiane questo
conto & semplice: deve essere

Im =1 o6

1.2/v6 —
cioe

Im — 14| < 1.96 x 1.2/V6

che corrisponde all’intervallo richiesto
m € (14 — 0.96, 14 4+ 0.96) = (13.04, 14.96).

Il valore della media teorica 12.5 non é in questo intervallo, e infatti 'ipotesi nulla & stata
rifiutata alla soglia del 5%. Si noti, infine, che non si puo affermare che con probabilita del
5% la media vera ¢ in quell’intervallo, perché la media vera ¢ un numero, non una variabile
aleatoria.

Questo facile esempio purtroppo non é realistico, perché in genere non ¢’¢ modo di conoscere
la deviazione standard di una popolazione. Questa informazione viene in genere ottenuta
per campionamento. Ricordo che si chiama varianza campionaria
2 1 - 2
NN _1e (Xi —mny)
=1
dove my ¢ la media empirica. Si divide per N — 1 perché i numeri X; — my non sono tutti
indipendenti, infatti la loro somma fa 0. Il numero di quelli indipendenti ¢ N — 1, ed & detto
numero dei gradi di liberta, abbreviato con df (“degrees of freedom”).
Quando abbiamo a che fare con dati empirici, dobbiamo tener presente che la varianza non
é nota, ma ¢ solo stimata approssimativamente dalla varianza campionaria. Se misuriamo
N dati con media empirica (campionaria) my e deviazione standard sy, e assumiamo come
Hy che la media vera (detta anche “teorica”) sia il valore assegnato m, allora il numero

my —m

- SN/\/N
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¢ distribuito non come una variabile aleatoria gaussiana, ma come una variabile “¢ di Student”
a N —1 gradi di liberta. Il t—test mette alla prova l'ipotesi Hy che la media sia m, misurando
le code della distribuzione di Student rispetto al valore calcolato ¢. Supponiamo per esempio
che le misure delle lunghezze dei sei pesci fossero

15.79 12.72 15.84 12.28 12.94 14.42

La media empirica é approssimativamente 14, la deviazione standard campionaria ¢ 1.58. Il
valore della statistica ¢

t= (14 —12.5)/1.59 x V6 ~ 2.3225

che va valutato rispetto alla distribuzione ¢ di Student a 5 grandi di liberta:

2xpt (2.32,df=5,lower.tail=F)
[1] 0.06784195

(le istruzioni pt rt dt qt sono le analoghe di pnrom rnorm dnorm gnorm per la distribu-
zione t di Student). Anche in questo caso rifiutiamo l'ipotesi nulla. Sia per il t—test che
per il calcolo degli intervalli di confidenza per la media possiamo ricorrere direttamente a
un’istruzione di R:

> t.test(y,m=12.5)
One Sample t-test

data: y
t = 2.3225, df = 5, p-value = 0.06784
alternative hypothesis: true mean is not equal to 12.5
95 percent confidence interval:
12.33993 15.65674
sample estimates:
mean of x
13.99833
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Condizioni per fare il t-test

L’uso del t-test prevede che la popolazione da cui ¢ estratto il campione sia gaussiana. La
verifica “a occhio” della guassianita puo essere fatta con il comando gnorm che confronta i
quantili del campione con i quantili di una guassiana standard; se nel grafico si vede, appros-
simativamente, una retta, allora il campione si puo considerare guassiano. Una risposta pil
affidabile si ottiene con un apposito test shapiro.test.

Il t—test si usa anche per il confronto tra medie di gruppi. Consideriamo la figura seguente,
in cui sono riportati due istogrammi appaiati per 20 valori X (in arancione), e 20 valori Y,
in viola. Le due corrispondenti medie sono indicate dai due triangoli vicino a 0, e valgono
mx =~ 0.01, e my ~ 0.33, e la differenza ¢ 6 = mx — my ~ —0.32.

0.5
|

0.4

freq.rel

0.2

0.1

0.0
|

° e e ‘ o | I | I I e e ° e
T T T T T T

T T
-3 -2 -1 0 1 2 3 4

valori

Ci chiediamo se queste due medie sono differenti.
t.test(X,Y)
Welch Two Sample t-test

data: x20 and y20
t = -1.4027, df = 38, p-value = 0.1688
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-0.7782064 0.1411719
sample estimates:
mean of x mean of y
0.009658318 0.328175561
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Come si vede la risposta é no, e viene anche calcolato l'intervallo di confidenza per la
differenza tra le due medie, che infatti contiene lo 0.

Ripetiamo ’analisi nel caso di 100 dati per X e 100 dati per Y, rappresentati nella seconda
figura.

0.4 0.5
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0.3
|
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0.1

0.0
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valori

I valori delle medie sono gli stessi di prima: mx ~ 0.01, e my =~ 0.33, e la differenza ¢é
0= mx —Mmy = —0.32.

t.test(X,Y)
Welch Two Sample t-test

data: x100 and y100
t = -2.3209, df = 196.9, p-value = 0.02132
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-0.58916599 -0.04786849
sample estimates:
mean of x mean of y
0.009658318 0.328175561

In questo caso, pero, il test indica che dobbiamo rifiutare I'ipotesi nulla, nonostante la
differenza tra le due medie sia la stessa. Cosa ¢ cambiato?

Il test deve valutare se la differenza delle due medie sia frutto del campionamento (ipotesi
H,) oppure no (ipotesi alternativa). In entrambi i casi la differenza ¢ la stessa, e neanche
gli istogrammi sono poi cosi differenti. Il fatto & che nel secondo caso la differenza ¢ grande
rispetto all’errore statistico che si compie su una media di 100 dati.
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A rigore, il t-test per due campioni richiede

- normalita dei campioni

- uguaglianza delle varianze

Ho gia segnalato che la normalita si verifica mediante lo shapiro.test. Per 'uguaglianza
delle varianze il test pin consigliato ¢ il test di Levene (che R ha su un pacchetto separato).
In altri contesti utilizzeremo il test di Barteltt. All’atto pratico non serve la verifica dell’u-
guaglianza delle varianze, perché esiste una variante del t-test che ¢ in grado di gestire questo
caso, ed ¢ il test di Welch. L’istruzione t.test in caso di due campioni fa esattamente il
test di Welch.

Cosa fare se i dati non sono distribuiti normalmente? Se il numero di dati & grande, il
teorema centrale del limite, che vale per i campionamenti casuali, dovrebbe consentire di
usare il t-test. Come si capisce se il numero di dati é sufficientemente grande? Come
indicazioni pratiche, non usate il t-test in caso di distribuzioni fortemente asimmetriche, e
in caso di presenza di outlier (vedi WS capitolo 13), Altrimenti ¢ il caso di passare a un
test mon parametrico, in cui Hy non si basa su una distruzione nota (binomiale, gaussiana,
etc.). In particolare, 'alternativa non parametrica al t-test é il test dei segni dei ranghi
di Wilcoxon (oppure la variante Mann-Whitney test). Per questo test Hy ¢ un’affermazione
sulla mediana (o sulla differenza di due mediane), e non usa I’assunzione di normalita.

Un altro possibile modo di trattare i casi non gaussiani & di “trasformare” i dati. Per esempio
i dati di concentrazione non hanno tipicamente distribuzioni normali, ma il loro logaritmo si.
In genere si “prova” a trasformare dati con funzioni semplici, come il logaritmo o le potenze.
Avere una “teoria” su come sono distribuiti i dati puo essere di aiuto, come nel caso delle
concentrazioni.

Osservo infine che in genere i test non parametrici sono “meno potenti” dei test parametrici.
Infatti 'errore di tipo II nei test parametrici, cioé di accettare 'ipotesi nulla anche se é
falsa, ¢ in realtad un’affermazione sul parametro che governa una distribuzione (per esempio
la media di una variabile gaussiana). Nel caso di un test non parametrico, lo “spazio” delle
ipotesi alternative ¢ piu largo.

6.3 ANOVA

Tra i test che riguardano variabili statistiche di conteggio ho brevemente illustrato il test
delle proporzioni di R, che ¢ un’implementazione del test del 2. Consideriamo il seguente
esempio. Sono stati sperimentati tre trattamenti riguardo la fertilizzazione su piante di
pomodoro: “bat” (batteri), “fert” (chimici), “ctr]” (controllo: nessuna fertilizzante). A fine
esperimento ogni pianta ¢ stata classificata con la variabile dicotomica “ad alta vitalita” /
“a bassa vitalita”. In questa situazione si chiama variabile di risposta la variabile con cui
viene descritto lo stato vitale della pianta, e variabile esplicativa il trattamento. Il motivo
di questi nomi ¢ che il trattamento deve “spiegare” come varia nell’esperimento lo stato vitale
della pianta, cioé come la pianta ‘“risponde” ai diversi trattamenti.

Questi sono i dati misurati.

‘ ctrl ‘ bat ‘ fert

alta 251 33| 50
bassa | 20| 30| 30
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Per verificare 'ipotesi Hy che i trattamenti non hanno effetto sulla vitalita, si fa un test di
indipendenza del x2, o, equivalentemente, un test delle proporzioni:

> av <- ¢(25,33,50)
> bv <- ¢(20,30,30)
> prop.test(av,av+bv)
3-sample test for equality of proportions without continuity correction

data: av out of av + bv
X-squared = 1.5629, df = 2, p-value = 0.4577
alternative hypothesis: two.sided
sample estimates:

prop 1 prop 2 prop 3
0.5555556 0.5238095 0.6250000

Fare questo test ¢ concettualmente differente dal confrontare le tre proporzioni a coppie,
facendo tre test, uno per ogni coppia. Infatti, fare pit test aumenta la probabilita di com-
mettere una errore di tipo I, cioé di rifiutare l'ipotesi nulla se é vera, e dunque si rischia
di vedere una differenza dove non c¢’é. Infatti se in un confronto abbiamo probabilitd o di
commettere un errore di tipo I, in k confronti la probabilita che almeno un confronto dia un
falso positivo ¢ 1 — (1 — a)*. Per a = 0.05 e k = 3 questo valore ¢ 0.14, molto pitt grande
di 0.05. Ci sono dunque tipi strategie per trattare questi casi. Una consiste nel diminuire la
soglia di significativita « in funzione del numero k dei livelli della variabile esplicativa. Per
la precisione, la correzione di Bonferroni prevede di dividere a per k. Questa correzione é
pero giudicata troppo “conservativa”, cioé sfavorevole all’individuazione dei veri positivi. La
strategia pitt comune é quella di usare dei test che fanno un confronto complessivo, discri-
minando tra l'ipotesi Hy che non ci siano differenze tra i trattamenti, e 'ipotesi alternativa
che almeno uno dei trattamenti abbia un effetto.

Nel caso di variabili di “risposta” nominali si usa il test del x? che in effetti discrimina I'indi-
pendenza della variabile risposta dalla variabile esplicativa. Nel caso di variabili quantitative,
se i livelli della variabile esplicativa fossero due useremmo il t-test, per piu livelli si ricorre

all’ ANOVA che ora descrivo.

Consideriamo di nuovo la variabile esplicativa data dal trattamento, a 3 livelli, e una variabile
di risposta continua, la concentrazione di flavonoidi sulla buccia dei pomodori. Supponiamo
di aver fatto due esperimenti in condizioni differenti (per esempio bassa irrigazione e irriga-
zione normale). I dati sono riportati nei grafici: in arancione i dati di controllo, in viola quelli
per fertilizzazione batterica, in verde quelli per fertilizzazione chimica. I triangoli in basso
segnano i valori delle medie nei tre gruppi, il triangolo rosso segna la media complessiva.
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Quello che il test deve valutare ¢ se la differenza tra le medie (equivalentemente la differenza
con la media complessiva) puo essere una fluttuazione del caso, e dunque essere dell’ordine
della deviazione standard delle medie campionarie, oppure se le medie sono ben separate tra
loro. Nelle figure, nel primo caso si osservano medie ben separate, nel secondo un po’ meno.
In realta in entrambi i casi Hy andra rifiutata, il numero dati della simulazione é elevato,
300 per ogni trattamento, dunque la deviazione standard campionaria € circa un ventesimo
di quella delle singole variabili.

Al differenza del t-test che confronta due medie, ora abbiamo a che fare con tre medie. Anche
in questo caso non dobbiamo utilizzare tre t-test per confrontare le medie a due a due, ma
una procedura complessiva che ci dica se ci sono medie differenti, poi cercheremo di indagare
su quali siano queste medie differenti.

I1 test il questione prende il nome di ANOVA (Analisys Of VAriance); ¢ un test parametrico
che assume la normalita dei dati dei diversi gruppi e anche che la varianza dei gruppi sia la
stessa (questa proprieta prende il nome di omoschedasticita). Vediamo come funziona.
Vedremo un esempio in laboratorio in cui delle piante di pomodoro vengono sottoposte a
tre differenti trattamenti: fertilizzazione mediante fertilizzanti chimici ("fert") o batterici
("bat"), o non fertilizzate (controllo, "cntrl"), e saremo interessati agli effetti di questi trat-
tamenti sulla quantita di flavonoidi sulla buccia, come misura della salute della pianta. In
questo caso la variabile esplicativa ha tre possibili valori “fert”, “bat”, “cntrl”. Indichero con
a il numero di livelli della variabile esplicativa, in questo caso a = 3. Per ogni trattamento,
vengono misurati dei dati. Indico con n; il numero di dati relativi al primo trattamento, con
no il numero di dati relativi al secondo, etc.. Il numero totale di dati ¢

N=ni+...n,.

Se tutti gli n; sono uguali a un valore n, allora ’esperimento si dice bilanciato, e in tal caso
N = an. Indico con Xj; il k—esimo dato relativo al trattamento ¢—esimo. Indico con

1 &

la media della variabile per il trattamento i—esimo. La media complessiva ¢
1 a n; 1 a 1 n; a n.
X.o - Xz - 7 P X’L - _ZXZO
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che ¢ anche uguale alla media delle medie relative ai trattamenti, pesate con la dimensione
del campione. Come facciamo in generale per una variabile statistica, descriviamo questa
variabile come la sua media pitt uno scarto. Per ogni dato relativo al trattamento ¢ possiamo
dunque scrivere

Xik = Xjo + i

Si ricordi che a 7 fissato le variabili ;;, hanno media nulla, Diamo un’espressione dello scarto

dalla media complessiva:
Xik: — X.. = (X,L. - X..) + Eik-

Dunque lo scarto di un dato dalla media complessiva é pari allo scarto della media del
gruppo dalla media complessiva dato da X;, — Xje, pitl lo scarto ;. del dato rispetto alla
media del gruppo. Indico con «; lo scarto della medie del gruppo dalla media complessiva
Q; = Xio - Xoo

Si chiama devianza totale la somma dei quadrati degli scarti tra i dati e la media comples-

siva .
St = D D (Xi = Xoa)?

i=1 k=1
Con “SS” si intende “Sum of Squares”, dunque questa € la somma dei quadrati totale. La
esplicito rispetto in a; e ;.. Ricordo che ogni volta che se scrivo dei dati come la media piu
la somma degli scarti, la stessa decomposizione vale per la media del quadrato, che & pari
al quadrato della media sommato alla media del quadrato degli scarti. In questo caso, per
ogni 7, €;;, hanno media nulla in k, e la media di X;; — X6 € ;. Dunque

H_ZZ ik — oo —Oé + — Zgzk

Moltiplicando questa uguaglianza per n; e sommando su ¢ si ottiene

SStot—Znoz +ZZ€”€

=1 k=1

L’ultimo termine & la devianza dentro i gruppi definiti dai diversi trattamenti:

Invece il primo termine ¢ la devianza tra i gruppi, perché misura lo scarto delle medie dei
gruppi dalla media complessiva:

SStra = inia? - ini(Xio - Xoo)2-
i=1 i=1

Se vale 'ipotesi nulla che non c¢’é differenza tra i gruppi, le differenze tra le medie sono solo il
risultato di differenti campionamenti da una stessa distribuzione, dunque la grandezza della
variabilita tra i gruppi deve essere simile alla grandezza della variabilita dentro i gruppi.
Come esprime questo fatto in termini di SSiq € S Sgentro? E necessario calcolare le varianze
campionarie, dividendo le devianze per il numero di gradi di liberta. La devianza tra i gruppi
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¢ la somma di a scarti dalla media complessiva, dunque ha a — 1 gradi di liberta. La devianza
nel gruppo i-esimo ha n; — 1 gradi di liberta, dunque la somma ha N — a gradi di liberta.
Quindi:

1
3t20t N _ 155tot
1
S?ra = 1 SStra
1
S?lentro = N — SSdentTo

La teoria afferma che se vale lipotesi nulla, allora s?,, ¢ uguale a s, e il rapporto
2.0/ S2eniro ha una precisa distribuzione, quella di una cosiddetta “variabile F' di Fisher a
(a — 1, N — a) gradi di liberta”. Se non vale l'ipotesi nulla, s?, sara maggiore di s2,,,,,. 1l
test € dunque un test monolatero. Il test ANOVA traduce in questo modo il confronto tra
pitt medie, nel confronto tra varianza tra i gruppi e varianza nei gruppi.

ANOVA a due vie

Puo accadere che ci sia pitt di una variabile esplicativa, per esempio potremmo avere delle
piante sottoposte a vari trattamenti, in differenti condizioni di irrigazione. In questo caso
si parla di ANOVA a due vie, intendendo appunto che ci sono due variabili esplicative.
Supponiamo dunque di avere una prima variabile A che assume a distinti valori Ay, ... A,,
e una seconda B che assume b distinti valori By, ... B,. Ci sono dunque ab valori possibili
della coppia di variabili (A, B); assumiamo che per ogni coppia abbiano di avere n dati
(esperimento bilanciato). Indico con Xjj; il valore del k—esimo dato per cui A = A; e
B = B;. Il numero totale dei dati sia dunque N = nab.

Posso operare esattamente come ho fatto prima, considerando come variabile esplicativa la
coppia di variabili (A4, B), e dunque scrivo

dove €, ha media nulla in &,
61] = X’Lj. - Xooo

¢ lo scarto tra le media X;;, della variabile nel gruppo (A;, B;) e la media complessiva Xqee-
Determiniamo i gradi di liberta delle variabili in gioco. Fissati 7 e j, €, ¢ una variabile
con n — 1 gradi di liberta, perché la somma in k& ¢ 0. Dunque, complessivamente, ¢;;;, € una

variabile a
a b

ZZ(n—l):abn—ab:N—ab
i=1 j=1
gradi di liberta.
Si puo notare che nell’espressione il membro di sinistra ha N — 1 gradi di liberta,
mentre 0;;, che ha somma nulla in 4, j, ha ab — 1 gradi di liberta. Come verifica di questi
conti si nota facilmente che
N—-1=ab—14+ N —ab.

Fin’ora abbiamo trattato le due variabili A e B come un’unica variabile di coppia, mentre
vogliamo indagare sugli effetti delle due variabili sulla variabili di risposta. Per fare questo
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dobbiamo analizzare il termine di scarto dalle media del gruppo d;; che riscriviamo nel
seguente modo, sommando e sottraendo le medie di X a A fissato e a B fissato:

51] = XZ]O - X.oo

= Xioo - X.oo + X’L]. - Xioo

= (Xioo - Xooo) + (Xojo - X.oo) + (ijo - Xioo - Xojo + Xooo)
Chiamo con «; lo scarto della media del gruppo A; dalla media complessiva:

oy = Xioo - X.oo
con f3; lo lo scarto della media del gruppo B; dalla media complessiva:
X.jo - X.oo
I1 termine rimanente lo indico con 7;;:
7ﬁij = X’L]o - Xioo - Xo_jo + X.oo

Osservo che o; ha a — 1 gradi di liberta, 8; ne ha b — 1, mentre 7;;, che ha media nulla sia
in 7 che in j, ne ha (a — 1)(b — 1) (come gli scarti di una tipica tabella di contingenza).

Siamo finalmente pronti a mostrare come funziona un test ANOVA a due vie. Abbiamo
scritto lo scarto come:

Xijk — Xeoo = i + Bj + T35 + Eiji,
cioé come a la somma di 4 contributi: I'effetto a; del valore della variabile A, I'effetto 3; del
valore della variabile B, I'effetto r;; dell’interazione tra i valori delle variabili A e B, e una
variabilita intrinseca e;;,. Corrispondentemente, con calcoli analoghi a quelli gia fatti per
I’ANOVA a una via che non ripeto, decompongo la devianza:

SSiot = SS4+ SSp + SSap + SSaentro

dove SS4 é la devianza tra i gruppi definiti dalla variabile A, dove SSg ¢é la devianza tra
i gruppi definiti dalla variabile B, SSsp ¢ la devianza tra i gruppi definiti dall’interazione
delle variabili, SSzeniro € la devianza dentro ai gruppi.

Corrispondentemente si determinano le varianze

1 1 1
St = msstot, sh = 0 1SSA; s = mSSB;
1 1
: = 7 99 y = 58 entro-
SAB (CL _ 1)(b _ 1) AB>  Sdentro N — ab dent

Il test ANOVA a questo punto consiste in tre confronti:

2 2 2 2 2 2
SA/Sdentrm SB/Sdentrm SAB/Sdentro

con lo scopo di scoprire se ¢’é una variabilita in A, in B, o nell’interazione AB, che eccede
la variabilita interna dei dati.

Questo test si chiama ANOVA a due vie con interazione. E possibile rinunciare a osservare
I'interazione delle due variabili, considerando la decomposizione

Xijk — Xoes = i + Bj + Eiji,
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cioé immaginando che lo scarto abbia una componente spiegata da A, una spiegata da B e
una parte intrinsecamente variabile. In pratica abbiamo accorpato 7;; nella parte variabile:

Eijk = Tij + Eijk-
Operando in questo modo &;;; non ha pitt media nulla in k&, ma ha media nulla in %k e 7, e in

ke j. Isuoi gradi di liberta sono la somma di quelli di r e di €, cio¢ (a—1)(b—1)+ N —ab =
N —a — b+ 1. La decomposizione della devianza diventa

SSiot =S54+ SSB + SSientro

Le rispettive varianze sono

1
a—1

1 1
SS 2 =—_S8§ 2 = ———————SSicntro-
A, Sp h—1 By Sdentro N—a—b+1 dent

1
Spor = msstoty sh =

11 test ANOVA consiste in due confronti:

2 2 2 2
SA/Sdentrm SB/Sdentro'

Si noti che rispetto al caso con interazione, cambia s2_ . = dunque valutare se la variabile A
ha effetto sulla variabile di risposta puo dare risultati differenti, a seconda che consideriamo
o meno l'interazione tra le due variabili.

Le ipotesi per poter usare ANOVA sono la normalita dei dati, e 'uguaglianza delle varianze.
Cosi come per il t-test, se le distribuzioni sono normali ma le varianze sono differenti, esistono
correzioni che permettono di utilizzare ancora ANOVA, in particolare su R utilizzeremo
oneway.test. Se la normalita é violata, si puo utilizzare il test non parametrico di Kruskal-
Wallis, che piti che un test per le medie ¢ un test che verifica se i dati dei vari gruppi vengono
dalla stessa distribuzione. Si osservi che se questo & vero (ipotesi nulla), in particolare le
varianze devono essere uguali. Dunque non ha molto senso usare il Kruskal-Wallis in assenza
di omoschedasticita, fatto che comunque implica la differenza tra le distribuzioni. Uno dei
test post-hoc nel caso non parametrico che puo essere usato ¢ il pairwise.wilcox.

Si tenga infine presente che ANOVA ¢é considerato un test robusto. Cito qui quanto ri-
portato dal testo [WS]. “IL”ZANOVA & sorprendentemente robusta rispetto alle deviazioni
dall’assunzione di normalita, in particolare quando le dimensioni campionarie sono grandi.
Questa robustezza deriva dalle proprieta delle medie campionarie descritte dal teorema del
limite centrale (...). L’ANOVA ¢ robusta anche rispetto agli scostamenti dall’assunzione di
uguale varianza nelle k£ popolazioni, ma soltanto se i campioni hanno tutti all’incirca la stessa
dimensione.”

In un contesto reale di ricerca o lavoro, vi consiglio di approfondire le condizioni di utilizza-
bilita dei test che volete usare (che purtroppo R non riporta nelle sue pagine di manuale).

6.3.1 ANOVA con prove ripetute

Considero i seguenti dati, relativi a 10 soggetti, indicati dal numero progressivo s, di cui
vengono misurate le ore di sonno o, dopo g = 0, 30, 60 giorni di un trattamento t = PT
oppure FT'.
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(s[ e[t [ o | sl s[t ] of
1] 0]DPT |56 G| 0] FT |39
130 | PT | 3.3 6|30 | FT | 47
160 | PT |89 6160 | FT | 7.0
2| 0| DPT |48 71 0| FT |41
2130 | PT |47 7130 | FT | 4.9
2160 | PT | 7.9 7160 | FT | 5.6
3] 0| PT |39 S| 0| FT |50
3130 | PT |53 8130 FT |38
3160 | PT |85 8160 | FT | 5.3
1] 0| PT |58 9| 0| FT |40
1130 | PT |45 930 | FT | 4.7
1160 | PT |82 9160 | FT |53
5] 0| PT |35 10| 0| FT |40
530 | PT |37 10 |30 | FT | 4.3
5160 | PT | 6.9 1060 | FT |63

In quello che segue considero la variabile “giorni” come una variabile nominale. Chiarisco
questo punto: se la considerassi come una variabile quantitativa in un modello di regressione
mi aspetterei un effetto lineare, dunque passare da 0 a 30 giorni o da 30 a 60 giorni dovrebbe
dare la stessa variazione sul numero di ore dormite. Questa ipotesi ¢ fisiologicamente poco
consistente: una terapia farmacologica a lunga durata cambia la biochimica, dunque “07,
“307, “60” possono essere pensati come tre distinti stati biochimici dei pazienti, senza una
relazione quantitativa. Quindi prima di continuare ridefiniamo le variabili ore e soggetto
come variabili nominali.

sonno$giorno <- as.factor(sonno$giorno)

sonno$soggetto <- as.factor(sonno$soggetto)

Ignoriamo la variabile trattamento e chiediamoci se la variabile “giorno” (cioé da quanto
tempo il soggetto & sotto trattamento) influenza il numero di ore dormite.

summary (aov(ore~giorno,data=sonno))

Df Sum Sq Mean Sq F value Pr(>F)
giorno 2 43.01 21.506 22.77 1.6e-06 **x
Residuals 27 25.50 0.944

In questa ANOVA c’¢ un errore concettuale, perché per ogni soggetto vengono fatte tre
misure, dunque parte della devianza residua 36.51 si spiega in termini di devianza dovuta
alla variabile “soggetto”, e questa devianza va tolta dal confronto per capire se la devianza
relativa alla variabile “giorno” sia grande.

85



Evidenziamo i contributi alla devianza:

summary (aov(ore~giorno+soggetto,data=sonno))

Df Sum Sq Mean Sq F value Pr(>F)
giorno 2 43.01 21.506 24.133 8.05e-06 *x*x
soggetto 9 9.46 1.051 1.179 0.364
Residuals 18 16.04 0.891

In quest’ANOVA la devianza residua viene decomposta nella parte soggetto, da 9 df, che
viene messa da parte, e in una vera parte residua, da 18 df. Il test viene fatto rapportando
la varianza tra i giorni alla varianza residua.

In questo output c’é un p-value che non ha senso calcolare, quello per la variabile soggetto.
Per avere un output piu 'pulito’ ¢’é una precisa istruzione di R:

summary (aov(ore~giorno+Error(soggetto/giorno) ,data=sonno))

Error: soggetto
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 9 9.456 1.051

Error: soggetto:giorno

Df Sum Sq Mean Sq F value Pr(>F)
giorno 2 43.01 21.506 24.13 8.05e-06 *xx*
Residuals 18 16.04 0.891

Osservo che lo stesso output si sarebbe ottenuto con il comando

summary (aov (ore~giorno+Error (soggetto) ,data=sonno)).

La sintassi soggetto/giorno mette sono in evidenza che la variabilita di giorno é dentro
soggetto: per ogni soggetto infatti ci sono tutti e tre i livelli di giorno. Nel gergo di ANOVA
si dice che giorno € una variabile within la variabile soggetto

Trascuriamo ora la variabile giorno, e vediamo se il tipo di trattamento influenza il numero
di ore di sonno. Per ogni trattamento ho 15 dati, dunque potrei pensare di fare il seguente
test.

summary (aov(ore~trattamento,data=sonno))

Df Sum Sq Mean Sq F value Pr(>F)
trattamento 1 4.88 4.880 2.148 0.154
Residuals 28 63.63 2.272

Anche qui pero sto facendo un errore, infatti questa ANOVA interpreta i dati come 'esito dei

due trattamenti su due differenti campioni di 15 soggetti, invece ogni trattamento riguarda
solo 5 soggetti, con 3 misure per ogni soggetto al variare dei giorni di terapia.
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Per provare a capire come procedere, decomponiamo la devianza pit che possiamo:

summary(aov(ore trattamento*soggetto*giorno,data=sonno
y (aov (ore” gg g1 d ))
Df Sum Sq Mean Sq

trattamento 1 4.88 4.880
soggetto 8 4.58 0.572
giorno 2 43.01 21.506

trattamento:giorno 2 7.87 3.936
soggetto:giorno 16 8.17 0.510

Si noti che non c’¢ variabilita residua, perché una volta specificato il soggetto, il numero di ore,
il trattamento ci siamo ridotto a un solo dato. Inoltre manca la coppia trattamento:soggetto,
perché la variabile trattamento € beetwen i soggetti, infatti ogni trattamento € stato assegnato
a diversi soggetti ma ogni soggetto e stato somministrato un solo trattamento. Ricordo che
invece la variabile giorno ¢ within i soggetti, cioé “giorno” ha i differenti valori in tutti i
soggetti.

Non é facilissimo capire i df della tabella. Sono immediati quelli di trattamento, variabile a
due livelli e con 1 df, quelli di giorno, variabile a tre livelli e 2 df, quelli di trattamento:giorno,
tabella 3 x 2 a 2 df. La coppia soggetto:giorno sembrerebbe una tabella 10 x 3 e dunque
dovrebbe avere 18 df. Pero i soggetti sono divisi in due gruppi, a seconda del trattamento.
Dunque in realta si tratta di due tabelle 5 x 3, da 8 df ciascuna, in totale appunto 16. Anche
i df di soggetto non sono 9 ma 8, proprio perché si tratta di due gruppi da 5 soggetti.

Se siamo interessati a valutare la devianza dovuta al trattamento, dobbiamo considerare
come residua tutta la devianza che non é relativa alla variabile giorno. Rimane dunque solo
la variabile soggetto, a 8 df, che in questo senso fa da residuo per il trattamento. Si veda
infatti 'output del seguente comando:

summary (aov(ore~trattamento+Error (soggetto) ,data=sonno))

Error: soggetto

Df Sum Sq Mean Sq F value Pr(>F)
trattamento 1 4.880 4.880 8.532 0.0193 *
Residuals 8 4.576 0.572

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 20 59.05 2.953

La devianza residua su cui viene fatto il test per il trattamento é quella degli 8 df di soggetto.
La devianza residua trascurata ¢ la somma delle devianze relative alla variabile giorno.
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Infine, analizziamo i due fattori trattamento e giorno.

summary (aov(ore~trattamento*giorno+Error(soggetto/giorno) ,data=sonno))

Error: soggetto

Df Sum Sq Mean Sq F value Pr(>F)
trattamento 1 4.880 4.880 8.532 0.0193 =
Residuals 8 4.576 0.572

Error: soggetto:giorno
Df Sum Sq Mean Sq F value Pr(>F)

giorno 2 43.01 21.506 42.128 4.21e-07 **x
trattamento:giorno 2 7.87 3.936 7.711 0.00452 *x
Residuals 16 8.17 0.510

Come si vede la prima parte dell’output contiene I'informazione sulla variabile trattamento,
che abbiamo gia visto con il comando precedente. La seconda parte contiene 'informazione
sulla variabile giorno e sulla coppia trattamento giorno. Si noti che il risultato relativo
all’effetto della variabile giorno ¢ un po’ differente rispetto al risultato del comando
summary (aov(ore~giorno+Error (soggetto/giorno) ,data=sonno))

perché ora parte della devianza ¢ stata spiegata con la variabile trattamento (come accade
in genere quanto si passa dall’analisi a una via all’analisi a due vie).

6.3.2 Test per i coefficienti della retta di regressione

Il test del’ANOVA appartiene ai test per verificare l’esistenza di un modello lineare nella
relazione tra variabili, dunque ha delle similitudini con la retta di regressione. Infatti, in
ANOVA consideriamo

Xir = Xeo + Q; + €ig,

cioé pensiamo che il dato X sia predetto dal valore medio complessivo X,,, pitl un effetto
«; dovuto al trattamento, pitt un errore, ;. sperabilmente gaussiano. Il valore di «; ¢
Xie — Xoe, € il test ANOVA serve a capire se questa differenza ¢ nulla, in pratica se la
variabile trattamento influenza i dati, oppure no.

Nei modelli di regressione lineare scriviamo

Ykzan—f—b—f—Ek,

dove a Xy + b ¢ la predizione in base al valore della variabile esplicativa, mentre ¢ ¢ la
differenza tra il valore vero e quello predetto, ed ¢ un numero modellizzato con una variabile
aleatoria di media nulla, sperabilmente gaussiana. Inoltre poiché la retta di regressione passa
per il baricentro, abbiamo scritto anche

Yk:?—l—a(Xk—)_()—i—ek

cioé Yy & predetto dalla media generale Y pit un effetto dovuto alla variabile esplicativa
X, piu la variabilita intrinseca €. Si puo testare se c’é l'effetto della variabile esplicativa:
I'ipotesi nulla sara che non c¢’¢ effetto, cioé che a = 0. 1l test é analogo al’lANOVA e si fa
decomponendo la devianza.
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Ricordo che abbiamo provato che
2 2 2

oy = a0, + 0?
cioé abbiamo decomposto la varianza della variabile di risposta in una parte spiegata dal
modello lineare, e quindi spiegata dalla variabilita della variabile esplicativa, e una variabilita
intrinseca, chiamata residua. Rileggiamo in termini di devianza questa uguaglianza:

AV =a® > (AXL)+D et

La devianza totale, a N — 1 df, ¢ la somma della devianza “tra i gruppi”, che in questo caso &
la devianza dovuta alla relazione lineare con la variabile esplicativa, pit la varianza residua.
Osserviamo che la somma delle ¢, é nulla, dunque sembrerebbe che ci sono N — 1 gradi di
liberta. Pero la procedura di ottimizzazione per a, quella che ci permette di trovare la retta
di regressione, impone l'indipendenza statistica tra AXj e ¢y, infatti risulta

eAX = (AY — aAX)AX =0, —aok

che ¢ proprio 0 perché a = oxy/0%. Dunque £, hanno somma nulla e verificano eAX = 0,
quindi ¢ sufficiente conoscerne N — 2 per determinare gli altri due: (infatti usando una
condizione possiamo esprimere uno degli £; in funzione degli altri N — 1, quindi possiamo
scrivere la seconda condizione in termini di N — 1 variabili ¢, e ricavarne una in funzione
delle rimanenti N — 2). Dunque i gradi di liberta sono N — 2. Ne segue che la devianza
dovuta a X ha un solo grado di liberta.

L’istruzione per costruire la retta di regressione della variabile y in funzione della variabile x
¢ summary (lm(y~x)). Per testare I'ipotesi nulla che a sia zero, basta considerare il summary
del modello. Per esempio, per la variabile spazio di frenata dist in funzione della velocita
speed per il dataset cars, il comando summary(1m(dist~speed,data=cars)) da

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -17.5791 6.7584 -2.601 0.0123 *
speed 3.9324 0.4155 9.464 1.49e-12 **x*

Il secondo p-value & quello relativo alla variabile speed.
Si confronti questo output con quello di summary(aov(dist~speed,data=cars)) che da

Df Sum Sq Mean Sq F value Pr(>F)
speed 1 21185 21185 89.57 1.49e-12 x*x%
Residuals 48 11354 237

Come si vede la riga relativa a dist da lo stesso p-value. Si noti che speed ha un df, perché
é una variabile quantitativa e non qualitativa, infatti il suo effetto e spiegato da un solo
numero, il coefficiente a.

Nell’output del test per il modello lineare c¢’é anche il p-value per l'intercetta, cioé viene
anche testata 'ipotesi nulla che il coefficiente b sia 0. Non entro nel dettaglio di questo test.
Osservo solo che, sia per a che per b, attraverso i test si possono ottenere degli intervalli
di fiducia. In pratica si possono considerare tutte le rette aX + b che sono compatibili
con i dati. In questo modo si possono determinare gli intervalli di fiducia per i valori di
aX + b; calcolato per ogni possibile valore di X si ottengono in questo modo le bande di
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fiducia per la retta di regressione. Se invece vogliamo valutare 'intervallo di fiducia
della predizione, dobbiamo considerare anche la variabilita dell’errore €. In questo modo si
ottengono le bande di fiducia per la predizione.
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6.4 Modelli lineari generalizzati e massima verosimiglian-
Za

Rivediamo da un altro punto di vista la costruzione della retta di regressione per due variabili
statistiche, X e Y, partendo da un modello, ipotizziamo cioé che

Yk:an—i—b—f-&fk

dove ¢, sono il risultato di un’estrazione di variabili aleatorie gaussiane indipendenti di media
nulla e varianza o2, non nota.
Vogliamo trovare i “migliori valori” dei coefficienti a e b. Possiamo ragionare in questo modo.
Aver visto Y} equivale ad aver visto 'errore ¢ = Y, — (a Xy + b), e, per ipotesi, la densita di
probabilita di questo evento ¢

1 Oi(aXith)2/20?

—e
V2o

Poiché abbiamo anche supposto 'indipendenza, la densita di probabilita dell’evento che
abbiamo osservato, cioe i valori Y7, ... Yy in corrispondenza di X, ... Xy, ¢ il prodotto delle

densita:

1 N
H e*(Yk*(aner))Q/?UQ.

(2ma2)N/2
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Un criterio per scegliere i migliori valori di a e b & quello detto di massima verosimiglian-
za, cioé di trovare a e b che rendono massima possibile la probabilita di vedere quello che
effettivamente abbiamo visto (in questo esempio massimizziamo la densita di probabilita).
Per poter fare questo conto, notiamo che rendere massima una quantita ¢ la stessa cosa che
rendere massimo il suo logaritmo, perché il logaritmo ¢ una funzione crescente. Calcoliamo
il logaritmo della densita di probabilita scritta sopra:

N .

——In(270?) — — Y — (aXi + b))%

> n(2m0%) — — 3" (¥ — (aXy +1)
k=1

L’unica parte di quest’espressione che dipende da a e b € quella dentro la sommatoria, e com-

pare con un segno meno. Dunque i valori di a e b che realizzano la massima verosimiglianza

sono quelli che rendono minima la somma

N
1 2
k=1
e questa condizione ¢ esattamente quella dei minimi quadrati.
In conclusione di questo esempio, la retta dei minimi quadrati € anche la retta che si ottiene
con il principio di massima verosimiglianza, nell’ipotesi modellistica che Y = aX + b + ¢,

dove ¢ ¢ gaussiana di media nulla e deviazione standard fissata.

Il principio di massima verosimiglianza si usa anche per determinare interessanti dipendenze
non lineari. Faro qui I'esempio della regressione “logistica”. Prima pero rivediamo la relazione

Ykzan—i-b—i-é‘k

Il valore a Xy + b predice < Y} >, il valore atteso della variabile Y calcolata nel posto Xj.
Dunque ci sono tre elementi:

e un predittore lineare, a.X + b;

e una relazione tra la media e il predittore lineare, in questo caso l'identita: < Y, >=
aXy + b (questa funzione si chiama “funzione di link”, o funzione di collegamento);

e una assegnata legge di probabilita per la variabile Y;: in questo caso una gaussiana di
deviazione standard fissata, e di media determinata attraverso il predittore lineare.

Consideriamo ora un esempio, tratto da [IM]. Nello studio delle cause della tragica esplosione
dello shuttle del 1986 si ¢ compreso che ha giocato un ruolo la rottura degli anelli a “O”, e
che la probabilita di rottura ¢ una funzione della temperatura al momento del lancio. Ci
sei anelli a “O”, e questi sono i dati riguardo alla loro rottura (riporto solo quelli relativi ai
due lanci avvenuti a temperatura piti bassa e quello avvenuto alla massima temperatura; la
temperatura € in gradi Fahrenheit):

lancio temp danno
15631
15631
1530
1530
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In questo caso, si puo ipotizzare che la variabile aleatoria “rottura”, che vale 1 se 1’anello si
rompe, ¢ 0 se non si rompe, sia una bernoulliana b di parametro incognito p (la probabilita
di rottura), con p che decresce al crescere della temperatura. Si osservi che p =< b > ¢
esattamente il valore atteso della variabile bernoulliana,

Si pud immaginare che p sia 1 per temperature molto basse e sia 0 per temperature molto
alte. La relazione tra p e T' non pud dunque essere lineare. Serve una funzione che passi
da un valore all’altro in modo monotono. Ci sono vari candidati per questa funzione di
collegamento, e una delle pit1 usate é la funzione logistica di cui abbiamo parlato a proposito
del modello di Verhulst. Si tratta di funzioni del tipo

1

o) = Ty emat0

Si veda [BDM] esempio 6.2.4.
Cerchiamo dunque il miglior predittore lineare tale che

1

p(T) =<¥T) >= 1

Questa relazione puo essere anche scritta al contrario, con qualche semplice passaggio:

=al +b

p
lo

81—

La funzione che a p associa log 1% si chiama “logit”. In questo caso, dunque, la funzione di
link ¢é la funzione logit, e la variabile aleatoria ¢ bernoulliana.

Come si trova il miglior predittore lineare? Si usa la massima verosimiglianza. Se p; € la

probabilita di rottura alla temperatura T}, e ho visto by (cioé 1 se ¢’é stata rottura, 0 se non

c’é stata), la probabilita dell’evento che ho visto &

be 1—by,

infatti se ho by vale 1, 1—b; = 0 e dunque Pespressione p2* (1—p;)' =% ¢ uguale a ph(1—pg)° =

Pk, che & proprio la probabilita di by = 1. Al contrario, se b, = 0, I'espressione ¢ uguale a
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po(1—pp)!t = 1—pg, che & la probabilita di b, = 0. Il miglior predittore lineare per logit(p)
si ottiene dunque massimizzando

N 1 be 1 1-by,
]H <1 + e_(aTk+b)) (1 + e+(aTk+b)) ’

dove ho usato il fatto che

1 1
1+ e @htt) — 1 4 er@lith)”

l—p=1-

R fara il conto per noi, trovando a e b.

In tutti i fenomeni in cui ci si aspetta un valore di soglia si utilizzano logistiche. Sono pero
possibili altre scelte. Consideriamo ancora una variabile bernoulliana b, ma supponiamo
che p = P(Z > aT +b), cioé il parametro p della variabile bernoulliana é governato dal
comportamento di una variabile normale standard. In questo caso la funzione che lega p a
T e

p = pnrom(al + b)

cioé la probabilita cumulata per una gaussiana standard. La funzione inversa che esprime
aT + b in termini di p & detta probit e ha un andamento analogo alla logistica (ma con
transizione pit netta, perché pnorm ha code meno pesanti della logistica).

C’¢ un’ulteriore possibile scelta, che calcola il predittore lineare per il log-log complemen-
tare (abbreviato in cloglog) di p, cio¢ la funzione

In(—1In(1 - p)) = aT +b.

La funzione inversa ¢

che ha code estremamente piu leggere, e dunque descrive transizioni brusche.
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Capitolo 7

Componenti principali

Per una introduzione all’argomento vedi [BDM 9.3].

7.1 Un esempio

Il metodo delle componenti principali ¢ un metodo che si applica quando si hanno molte
variabili statistiche pitt o meno correlate tra loro, e ci si aspetta che la variabilita dei dati
possa pero essere descritta con poche variabili.

Supponiamo di considerare K dati, ognuno composto dalla misura di N variabili statistiche
differenti. Geometricamente, ogni dato ¢ un punto in uno spazio dimensione N, in cui gli assi
perpendicolari rappresentano le N variabili statistiche. Il metodo delle componenti principali
permette di trovare dei nuovi assi perpendicolari, intorno al baricentro, in modo che i dati
si possono descrivere, con un piccolo errore, usandone solo alcune. In questo modo si riduce
la dimensione dello spazio delle variabili, trascurando quelle meno rilevanti.

Invece di dare una spiegazione astratta, passo direttamente all’esempio concreto. La teoria
che sto descrivendo ¢ utilissima se N ¢ grande, ma da indicazioni interessanti anche per
per piccoli N. In particolare, nell’esempio che considereremo avremo 15 anfore (dunque
K = 15) e per ogni anfora avremo la misura di 4 differenti caratteristiche geometriche, e
dunque N = 4:

h e laltezza
la é la larghezza dell’apertura
im ¢ 'altezza alla quale inizia il manico

fm ¢ l'altezza alla quale finisce il manico

Ci si puo chiedere quanto queste variabili siano correlate tra loro, e se é sufficiente conside-
rarne meno di 4 per descrivere la geometrica delle anfore.

Per esempio, se ci fosse correlazione massima tra tutte le variabili, vorrebbe dire che esiste un
solo modello di anfora, prodotto in varie dimensioni. Se invece di fossero due tipi di anfore,
quelle con manico grande e quelle con manico piccolo, indipendentemente dalla dimensione

95



complessiva, la variabile importante sarebbe fm-im, che sarebbe poco correlata con l'altezza
e la larghezza. Se esistessero anfore di qualunque altezza e qualunque larghezza, altezza e
larghezza dovrebbero essere poco correlate, dunque entrambe le variabili dovrebbero essere
separatamente prese in considerazione.

Questi sono i dati, in centimetri

fm im h la
24.4 21.3 304 10.7
23.6 20.3 322 838
209 175 29.6 8.9
22.7 19.2 284 11.0
20.7 177 277 10.1
25.6 21.8 33.8 94
21.4 177 309 11.6
26.9 23.5 339 12.6
24.5 21.2 32.8 10.1
10 || 24.1 21.1 33.2 10.0
11 ] 26.6 22.8 33.8 104
1211209 176 279 104
131246 21.1 34.1 10.4
14 || 25.0 221 356 11.6
15 || 245 21.1 34.0 10.5

00~ O T W N

Ne)

L’altezza media ¢ 31.89 cm, la larghezza media ¢ 10.43 cm, mentre la media delle variabili im
e fm ¢, rispettivamente, 20.40 e 23.76 centimetri.
Nella tabella seguente sono riportati le differenze dai valori medi.

fm im h la
1 0.64 090 -1.49 0.27
2 |-0.16 -0.10 0.31 -1.63
3 |-286 -290 -2.29 -1.53
4 ||-1.06 -1.20 -3.49 0.57
5 | -3.06 -2.70 -4.19 -0.33
6 1.84 140 191 -1.03
7 |-236 -2.70 -0.99 1.17
g 11314 310 201 217
9 1074 0.80 091 -0.33
101{ 0.34 070 131 -043
1111284 240 191 -0.03
12 | -2.86 -2.80 -3.99 -0.03
1311084 070 221 -0.03
14 || 124 170 3.71 1.17
151 0.74 0.70 211 0.07
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Questa é la matrice di covarianza

fm im h la
fm 4.1154286 3.9978571 4.3001429 0.6042857
im 3.9978571 3.9585714 4.2200000 0.6171429
h 4.3001429 4.2200000 6.5126667 0.4890476
la 0.6042857 0.6171429 0.4890476 1.0223810

da cui si nota la piccola variabilita della larghezza rispetto alle altre variabili, mentre questa
é la matrice di correlazione

fm im h la
fm 1.0000000 0.9904909 0.8306076 0.2945971
im 0.9904909 1.0000000 0.8311201 0.3067680
h 0.8306076 0.8311201 1.0000000 0.1895245
la 0.2945971 0.3067680 0.1895245 1.0000000

Come si vede, c’¢ una grande correlazione tra inizio e fine dell’altezza del manico, e queste
due variabili sono anche abbastanza correlate all’altezza, mentre la larghezza é poco correlata
con tutte le variabili.

L’istruzione di R che trova le componenti principali & prcomp. Vediamo I'output del comando
nel caso delle anfore.

Rotation:

PC1 PC2 PC3 PC4
fm -0.53442345 -0.3883972 0.2791895 0.696844594
im -0.52435231 -0.3883532 0.2454524 -0.716930628
h -0.65829082 0.6819521 -0.3187255 0.002937617
la -0.07809888 -0.4829811 -0.8719062 0.020235025

La “rotazione” permette di passare dalle vecchie coordinate fm, im, h, la, alle nuove
PC1,...PC4 (ricordo che il baricentro é posto in 0). In particolare, se un dato aveva coor-
dinate fm,im,h,la (rispetto al baricentro) la nuova prima coordinata del dato si ottiene
moltiplicando questi valori per la prima colonna e poi sommando

—0.574fm — 0.576im — 0.531h — 0.237la

Analogamente per le altre.

Questa é la matrice di covarianza nelle nuove coordinate

PC1 PC2 PC3 PC4
PC1 1.342307e+01 1.636774e-15 -9.102342e-16 -3.010668e-15
PC2 1.636774e-15 1.314039e+00 5.290519e-17 -1.687205e-17
PC3 -9.102342e-16 5.290519e-17 8.339232e-01 -2.647550e-17
PC4 -3.010668e-15 -1.687205e-17 -2.647550e-17 3.801110e-02

Come si vede le varianza sono in ordine decrescente, e le covarianze sono praticamente nulle:
le componenti principali sono variabili statisticamente indipendenti.
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Importance of components:

PC1 PC2 PC3 PC4
Standard deviation 3.6638 1.14632 0.91319 0.19496
Proportion of Variance 0.8599 0.08418 0.05343 0.00244
Cumulative Proportion 0.8599 0.94414 0.99756 1.00000

Si legge qui quanto la varianza di ogni nuova variabile contribuisce al totale, cioé quanta
parte della varianza complessiva ¢ “spiegata” dalle varie componenti. Poiché sono in ordine
decrescente, ¢ utile guardare anche la proporzione cumulata, che ci dice che le prime due
componenti spiegano circa il 95% della variabilita dei dati, mentre la quarta componente &
piuttosto inutile.

Guardando la matrice di rotazione, si nota che la prima componente principale é fatta in
ugual misura dalle prime tre altezze, e in misura minore dalla larghezza (tutte con lo stesso
segno). Quindi ¢ una misura della dimensione dell’oggetto. Poiché tutti i segni sono negativi,
piu ¢ alto PC1, pin 'oggetto é piccolo. La dimensione delle anfore spiega circa 1'85% della
variabilita dei dati.

La seconda componente ¢ composta sostanzialmente dalla larghezza e, in misura minore, ma
con segno opposto, dalle altre tre variabili. Dunque ¢ una misura della larghezza, ma anche
dello schiacciamento dell’oggetto: piut PC2 ¢ grande, piu l'anfora € tozza e i manici sono
bassi.

La componente PC3 ha fm e im uguali ma opposti in segno all’altezza e larghezza dunque
rappresenta la posizione relativa del manico rispetto alle dimensioni principali

Infine, PC4 misura la larghezza del manico rispetto alla media, infatti é praticamente
0.7(im — fm).
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