Esonero di Istituzioni di Fisica Matematica - A

12 aprile 2017

Esercizio 1

Risolvi l'equazione di Fredholm per $f \in L^2(0, +\infty)$:

$$f(x) - \int_0^{+\infty} e^{-(x+\alpha y)/2} f(y) dy = (1 - \beta x) e^{-x/2},$$

al variare del parametro $\alpha>0$ e del parametro $\beta\in\mathbb{R}$

Ricordo che

$$\int_0^{+\infty} e^{-\gamma x} dx = 1/\gamma \quad \int_0^{+\infty} x e^{-\gamma x} dx = 1/\gamma^2$$

Riscrivo l'equazione:

$$f(x) = e^{-x/2} \int_0^{+\infty} e^{-\alpha y/2} f(y) dy + (1 - \beta x) e^{-x/2}$$

Dunque l'equazione è risolubile se esiste

$$c = \int_0^{+\infty} e^{-\alpha x/2} f(x) \, \mathrm{d}x$$

Moltiplico per $e^{-\alpha x/2}$ e integro, ottenendo

$$c = \frac{2c}{1+\alpha} + \frac{2}{1+\alpha} - \frac{4\beta}{(1+\alpha)^2}$$

c è univocamente determinato se $2/(1+\alpha) \neq 1$, cioè $\alpha \neq 1$. In questo caso la soluzione esiste ed è unica.

Se invece $\alpha = 1$, l'equazione per c diventa

$$c = c + 1 - \beta$$

dunque l'equazione è risolubile solo per $\beta = 1$, e la soluzione è

$$f(x) = (k - x)e^{-x/2}$$

con k arbitrario.

Esercizio 2

Sia $T \in \mathcal{L}(\ell_2(\mathbb{N}))$ dato da

$$T\hat{f}_k = \frac{k(-1)^k}{\sqrt{1+k^2}}\hat{f}_k$$

Determina la sua norma, il suo aggiunto e lo spettro.

È un operatore di moltiplicazione, dunque la sua norma è data dall'estremo superiore del modulo dei coefficienti che è 1. I coefficienti sono numeri reali, dunque T è autoaggiunto. È un operatore diagonale, dunque lo spettro puntuale è dato dai valori

$$\lambda_k = \frac{k(-1)^k}{\sqrt{1+k^2}}$$

che sono tutti distinti. Lo spettro continuo è dato dai valori che sono nella chiusura, cioè ± 1 . Non c'è spettro residuo perché è autoaggiunto.

Esercizio 3

Sia $T \in \mathcal{L}(L^2(\mathbb{R}))$ dato da

$$Tf(x) = \operatorname{sgn}(x)f(-x)$$

Determina la sua norma, il suo aggiunto e lo spettro.

T è una isometria, dunque la sua norma è 1. Noto che $T^2=-I$. Il suo aggiunto è $T^*=-T$ (dunque $TT^*=-T^2=I$, cioè T è un operatore unitario). Essendo un'isometria, se $Tf=\lambda f$ allora $|\lambda|=1$. Poiché $T^2=-I$, si ha anche se $\lambda^2=-1$ Ma allora ci sono solo due possibilità: $\lambda=\pm i$.

Infatti, indicando con $f^+(x) = f(x)$ se x > 0 e $f^-(x) = f(-x)$, se x < 0, l'equazione per il risolvente è:

$$\lambda f^+ - f^- = b^+$$
$$f^+ + \lambda f^- = b^-$$

che ha soluzioni se $\lambda \neq \pm i$. Se invece $\lambda = i$, tutte le funzioni tali che i $f^+ - f^-$ sono autofunzioni. Dividendo parte reale e parte immaginaria, si ottengo le funzioni f = a(x) + ib(x) tali che $b^+ = -a^-$, e $b^- = a^+$. Le autofunzioni per $\lambda = -i$ si determinano nello stesso modo.

Ci si potrebbe infine chiedere se i due autospazi hanno come somma diretta l'intero spazio.

Esercizio 4

Sia $T_{\alpha} \in \mathcal{L}(L^2(\mathbb{R}))$ dato da

$$T_{\alpha}f(x) = \int_{\mathbb{D}} \frac{e^{-(x-y)^2}}{1+\alpha y^2} f(y) dy$$

con $\alpha \geq 0$. Discuti limitatezza e compattezza di T_{α} , al variare di $\alpha \in [0, +\infty)$. Studia se, e in che senso, vale

$$\lim_{\alpha \to 0} T_{\alpha} = T_0$$

È evidente che se $\alpha > 0$ il nucleo è quadrosommabile, dunque T_{α} è compatto (e in particolare limitato). Se $\alpha = 0$ l'operatore è continuo ma non compatto. Per provare che è continuo, si procede come sempre, usando che il nucleo di convoluzione è in L^1 . Per provare che non è compatto, si può passare in Fourier, in cui diventa un operatore di moltiplicazione, oppure operare direttamente usando il fatto che è un operatore di convoluzione: data f, sia $f_n(x) = f(x+n)$, che tende a 0 debolmente. Allora $Tf_n(x) = Tf(x+n)$, dunque $||Tf_n|| = ||Tf||$ e Tf_n non può tendere a 0 fortemente.

Per quel che riguarda il limite, non può valere in norma operatoriale (T_0 sarebbe compatto, e non è vero). Analizzo prima la convergenza debole $T_{\alpha} \to T_0$ perché è più semplice.

$$(g, (T_{\alpha} - T_0)f) = -\int dx dy e^{-(x-y)^2} \frac{\alpha y^2}{1 + \alpha y^2} g(y) f(x)$$

La funzione $e^{-(x-y)^2}|g(y)||f(x)|$ è sommabile, infatti è stimata da

$$\frac{1}{2}e^{-(x-y)^2}(g^2(y) + f^2(x))$$

che è evidentemente in L^1 . Inoltre

$$\frac{\alpha y^2}{1 + \alpha y^2} \le 1$$

Dunque posso passare al limite $\alpha \to 0$ invocando la convergenza dominata, ottenendo 0.

Per quanto riguarda la convergenza forte, si usa un argomento analogo, ma più involuto. Sia $A_{\alpha}=T_0-T_{\alpha}$, di nucleo integrale

$$e^{-(x-y)^2} \frac{\alpha y^2}{1 + \alpha y^2}$$

Chiedersi se $||A_{\alpha}f|| \to 0$ a f fissato equivale a chiedersi se $||T_0B_{\alpha}f|| \to 0$ dove B_{α} è l'operatore di moltiplicazione per $\frac{\alpha x^2}{1+\alpha x^2}$. L'operatore B_{α} tende a 0 forte, infatti

$$||B_{\alpha}f||^2 = \int |f(x)|^2 \left(\frac{\alpha y^2}{1 + \alpha y^2}\right)^2$$

che va a 0 per convergenza dominata. Poiché T_0 è continuo, anche $A_{\alpha}f$ va a zero in norma.