6 Uguaglianze e limiti

Esercizio 6.1

Siano f e g due funzioni scalari in \mathbb{R}^n . Prova che

$$\nabla (fg) = f\nabla g + g\nabla f$$

Esercizio 6.2

Sia \mathbf{w} un campo vettoriale in dimensione n, e sia f una funzione scalare. Prova che

$$\operatorname{div}\left(f\mathbf{w}\right) = \nabla f \cdot \mathbf{w} + f \operatorname{div} \mathbf{w}$$

Esercizio 6.3

Calcolare la divergenza del campo vettoriale $\hat{\mathbf{x}}$ in \mathbb{R}^n per $\mathbf{x} \neq 0$.

Esercizio 6.4

Sia A una matrice; calcolare la divergenza del campo vettoriale $A\mathbf{x}$ in \mathbb{R}^n .

Esercizio 6.5

Siano \mathbf{a} e \mathbf{b} due vettori in \mathbb{R}^n . Con il simbolo $\mathbf{a} \otimes \mathbf{b}$ indico il prodotto tensore, cioè la matrice di coefficienti a_ib_j (equivalentemente, è il prodotto tra il vettore riga \mathbf{a} e il vettore colonna \mathbf{b}). Calcolare la divergenza di $A\hat{\mathbf{x}}$, dove A è una matrice, mostrando come si estrime in funzione della traccia di A e di $A\hat{\mathbf{x}} \otimes \hat{\mathbf{x}}$.

Esercizio 6.6

Sia \mathbf{v} un vettore, calcola la divergenza di $\hat{\mathbf{x}} \otimes \hat{\mathbf{x}} \mathbf{v}$.

Esercizio 6.7

Sia f una funzione in \mathbb{R}^n . Provare che

$$(\nabla f)(\mathbf{x} - \mathbf{y}) = \nabla_x (f(\mathbf{x} - \mathbf{y})) = -\nabla_u (f(\mathbf{x} - \mathbf{y}))$$

Esercizio 6.8

Sia $f(\mathbf{x})$ una funzione regolare in \mathbb{R}^3 . Calcola il limite per $\varepsilon \to 0$ di

$$\int_{|\mathbf{x}|=\varepsilon} \sigma(\mathrm{d}\mathbf{x}) \, \frac{1}{|\mathbf{x}|^2} f(\mathbf{x})$$

Esercizio 6.9

Sia $f \in \mathbf{C}^1(\mathbb{R}^2)$ a supporto compatto. Provare, isolando la singolarità, che

$$\int_{\mathbb{R}^2} \frac{\mathbf{x} - \mathbf{y}}{|\mathbf{x} - \mathbf{y}|^2} \cdot \nabla f(\mathbf{y}) \, d\mathbf{y} = cf(\mathbf{x})$$

15

per un'opportuna costante c.

Esercizio 6.10

31 dicembre 2013

Sia $\mathbf{v}(\mathbf{x})$ un campo vettoriale regolare in \mathbb{R}^3 . Calcola il limite per $\varepsilon \to 0$ di

$$\int_{|\mathbf{x}|=\varepsilon} \sigma(\mathrm{d}\mathbf{x}) \, \frac{\mathbf{x} \otimes \mathbf{x}}{|\mathbf{x}|^4} \mathbf{v}(\mathbf{x})$$

Esercizio 6.11

Calcolare la derivata temporale e il laplaciano in \mathbb{R}^n della funzione

$$u(\mathbf{x},t) = \frac{1}{t^{n/2}} e^{-|\mathbf{x}|^2/t}$$

Trovare ν tale che u risolva $\partial_t u = \nu \triangle u$.

Esercizio 6.12 * Scaling parabolico per l'equazione del calore

Sia $u(\mathbf{x},t)$ soluzione di $\partial_t u = \nu \triangle u$. Per quali α e β parametri positivi la funzione $u(\alpha \mathbf{x}, \beta t)$ è soluzione della stessa equazione?

Risolvere lo stesso problema per l'equazione delle onde, e discutere la differenza tra le due risposte.

31 dicembre 2013 16